• Title/Summary/Keyword: Homeobox gene

Search Result 55, Processing Time 0.026 seconds

In silico genome wide identification and expression analysis of the WUSCHEL-related homeobox gene family in Medicago sativa

  • Yang, Tianhui;Gao, Ting;Wang, Chuang;Wang, Xiaochun;Chen, Caijin;Tian, Mei;Yang, Weidi
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.19.1-19.15
    • /
    • 2022
  • Alfalfa (Medicago sativa) is an important food and feed crop which rich in mineral sources. The WUSCHEL-related homeobox (WOX) gene family plays important roles in plant development and identification of putative gene families, their structure, and potential functions is a primary step for not only understanding the genetic mechanisms behind various biological process but also for genetic improvement. A variety of computational tools, including MAFFT, HMMER, hidden Markov models, Pfam, SMART, MEGA, ProtTest, BLASTn, and BRAD, among others, were used. We identified 34 MsWOX genes based on a systematic analysis of the alfalfa plant genome spread in eight chromosomes. This is an expansion of the gene family which we attribute to observed chromosomal duplications. Sequence alignment analysis revealed 61 conserved proteins containing a homeodomain. Phylogenetic study sung reveal five evolutionary clades with 15 motif distributions. Gene structure analysis reveals various exon, intron, and untranslated structures which are consistent in genes from similar clades. Functional analysis prediction of promoter regions reveals various transcription binding sites containing key growth, development, and stress-responsive transcription factor families such as MYB, ERF, AP2, and NAC which are spread across the genes. Most of the genes are predicted to be in the nucleus. Also, there are duplication events in some genes which explain the expansion of the family. The present research provides a clue on the potential roles of MsWOX family genes that will be useful for further understanding their functional roles in alfalfa plants.

Zinc Finger E-box binding Homeobox 1 as Prognostic Biomarker and its Correlation with Infiltrating Immune Cells and Telomerase in Lung Cancer

  • Kim, Hye-Ran;Seo, Choong-Won;Kim, Jongwan
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • The aim of this study was to identify the expression of zinc finger E-box binding homeobox 1 (ZEB1), its prognostic significance, and correlation between ZEB1 and infiltrating immune cells in lung cancer. Correlation between ZEB1 and telomerase was also analyzed in different types of cancers. RNA sequencing analysis and survival rates of patients were confirmed by Gene Expression Profiling Interactive Analysis (GEPIA). The Kaplan-Meier plotter and PrognoScan databases were used to analyze the prognostic value of ZEB1 in various cancers. The Tumor IMmune Estimation Resource (TIMER) was used to determine the correlation between ZEB1 and infiltrating immune cells. Lower ZEB1 expression was lower in lung cancer and was related to poor prognosis in lung adenocarcinoma (LUAD). ZEB1 expression exhibited a significantly positive correlation with infiltration levels of immune cells in LUAD and lung squamous cell carcinoma. Furthermore, we found that the ZEB1 expression correlated with subunits of telomerase. Our findings suggest ZEB1 as a potential biomarker to be used for prognostic significance and tumor immunology in lung cancer. The correlation between the expression of ZEB1 and telomere-related gene will help in understand the cancer-promoting mechanisms.

Leri-Weill dyschondrosteosis in a newborn presenting with respiratory failure due to severe micrognathia

  • Gang, Mi Hyeon;Lee, Jianne;Lee, Yong Wook;Shin, Ji Hye;Lim, Han Hyuk;Kim, Yoo-Mi;Chang, Mea-young
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.108-111
    • /
    • 2020
  • Short stature homeobox-containing gene (SHOX) is a well-known causative gene for the short stature in Turner syndrome. The clinical manifestation of SHOX gene related disorders varies from SHOX haploinsufficiency, presenting with idiopathic short stature, disproportionate short stature, or Leri-Weill dyschondrosteosis (LWD) to recessive form of extreme dwarfism and limb deformity in Langer mesomelic dysplasia. LWD is usually diagnosed upon suspicion based on short stature and skeletal abnormalities, and it is rarely accompanied with respiratory failure in the neonatal period. Here, we report the case of a newborn infant with LWD presenting with severe micrognathia that caused respiratory distress, which was diagnosed using microarray testing. Even when the manifestation of Madelung deformity is not yet apparent, LWD should be considered as one of underlying diseases related to congenital micrognathia.

Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers

  • Zhu, Xiao-Lu;Ai, Zhi-Hong;Wang, Juan;Xu, Yan-Li;Teng, Yin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4607-4611
    • /
    • 2012
  • Objective: Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. Methods: The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Results: Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. Conclusions: These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.

Periventricular nodular heterotopia in a child with a mild Mowat-Wilson phenotype caused by a novel missense mutation of ZEB2

  • Kim, Young Ok;Lee, Yun Young;Kim, Myeong-Kyu;Woo, Young Jong
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.71-75
    • /
    • 2019
  • Periventricular nodular heterotopia (PNH) is a malformation of cortical development in which normal neurons inappropriately cluster in periventricular areas. Patients with Mowat-Wilson syndrome (MWS) typically present with facial gestalt, complex neurologic problems (e.g., severe developmental delay with marked speech impairment and epilepsy), and multiple anomalies (e.g., Hirschsprung disease, urogenital anomalies, congenital heart defects, eye anomalies, and agenesis of the corpus callosum [CC]). MWS is mostly caused by haploinsufficiency of the gene encoding zinc-finger E-box-binding homeobox 2 (ZEB2) due to premature stops or large deletions. We present a case report of a 9-year-old girl with PNH, drug-responsive epilepsy, severe intellectual disability, and facial dysmorphisms only in whom we performed whole-exome sequencing and found a de novo heterozygous missense mutation (c.3134A>C; p.His1045Pro) of ZEB2 (NM_014795.3; NP_055610.1). This mild case of MWS caused by a rare novel missense mutation of ZEB2 represents the first report of MWS with isolated PNH.

POU class 1 homeobox 1 gene polymorphisms associated with growth traits in Korean native chicken

  • Manjula, Prabuddha;Choi, Nuri;Seo, Dongwon;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.643-649
    • /
    • 2018
  • Objective: POU class 1 homeobox 1 (POU1F1) mediates growth hormone expression and activity by altering transcription, eventually resulting in growth rate variations. Therefore, we aimed to identify chicken POU1F1 polymorphisms and evaluate the association between single nucleotide polymorphisms (SNPs) and growth-related traits, and logistic growth curve parameter traits (${\alpha}$, ${\beta}$, and ${\gamma}$). Methods: Three SNPs (M_1 to M_3) were used to genotype 585 $F_1$ and 88 $F_0$ birds from five Korean native chicken lines using a polymerase chain reaction-restriction fragment length polymorphism method. Results: Single marker analyses and traits association analyses showed that M_2 was significantly associated with body weight at two weeks, weight gain from hatch to 2 weeks, and weight gain from 16 to 18 weeks (p<0.05). M_3 was significantly associated with weight gain from 14 to 16 weeks and from 16 to 18 weeks, and asymptotic body weight (${\alpha}$) (p<0.05). No traits were associated with M_1. The POU1F1 haplogroups were significantly associated with weight gain from 14 to 16 weeks (p = 0.020). Linkage disequilibrium test and Haploview analysis shown one main haploblock between M_2 and M_3 SNP. Conclusion: Thus, POU1F1 significantly affects the growth of Korean native chickens and their growth curve traits.