• 제목/요약/키워드: Holt Winters

검색결과 32건 처리시간 0.025초

결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구 (A Study on Internet Traffic Forecasting by Combined Forecasts)

  • 김삼용
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1235-1243
    • /
    • 2015
  • 최근 들어 ICT 분야의 발달에 따라 데이터 사용량의 급격한 증가로 인터넷 트래픽 사용량 예측은 중요성은 강조되고 있다. 이러한 예측치를 적절한 트래픽 관리와 제어를 위한 계획 수립에 도움을 준다. 본 논문은, 5분 단위의 인터넷 트래픽 자료를 이용하여 결합 예측 모형을 제안하고자 한다. 이에 대하여 시계열의 대표적인 3개 모형인 Seasonal ARIMA, Fractional ARIMA(FARIMA), Taylor의 수정된 Holt-Winters 모형을 적용하였다. 모형 간 결합 예측 방법으로 예측치 간의 SA(Simple Average) 결합 예측 방법과 OLS(Ordinary Least Square)를 이용한 결합방법, ERLS(Equality Restricted Least Squares)를 이용한 결합 예측 방법, Armstrong(2001)이 제안한 MSE 기반 결합 예측 방법을 사용한다. 이에 따른 결과로서 3시간에서의 예측은 Seasonal ARIMA가 선택된 반면, 6시간 이후 예측에서는 결합 예측 방법이 좋은 예측 성능을 보여준다.

광, 공업용 건물의 전기 사용량에 대한 시계열 분석 (Forecasts of electricity consumption in an industry building)

  • 김민아;김재희
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.189-204
    • /
    • 2018
  • 본 연구는 2014년 1월부터 2017년 4월까지 광, 공업용 제조업을 하는 건물(GGM)의 전기 사용량에 대한 예측을 살펴보고자 한다. SARIMA, SARIMA + GARCH, Holt-Winters 방법, Fourier 변환으로 분해를 한 ARIMA 모형을 중심으로 네 가지 모형에 대한 적합을 하였다. 또한 2017년 5월 사용량에 대한 예측하고, 실제값을 고려하여 각 모형에 대해 예측 제곱근 평균 제곱 오차와 예측 오차율을 비교하였다. GGM 건물의 전기 사용량에 대한 변동이 심하기 때문에 여러 가지 모형 중에서도 변동성과 주기를 함께 고려한 SARIMA + GARCH 모형의 적합과 예측이 가장 뛰어난 것을 확인하였다.

시계열 모형을 이용한 단기 풍력발전 예측 연구 (A study on short-term wind power forecasting using time series models)

  • 박수현;김삼용
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1373-1383
    • /
    • 2016
  • 풍력에너지 산업이 발전하고 풍력발전에 대한 의존율이 높아짐에 따라 안정적인 공급이 중요해지고 있다. 원활한 전력수급계획을 세우기 위해서 풍력발전량을 정확히 예측하는 것이 중요하다. 본 논문에서는 강원도 평창 횡계리에 설치된 대관령 2풍력(2MW 1기)의 시간별 풍력발전 데이터와 강원도 대관령 기상대에서 관측되는 시간별 풍속과 풍향 데이터를 기상청 지상관측자료에서 수집하여 연구하였다. 풍력발전량 예측을 위하여 신경망 모형과 시계열 모형인 ARMA, ARMAX, ARMA-GARCH, Holt Winters 모형을 비교하였다. 모형 간 예측력을 비교하기 위해 mean absolute error(MAE)를 사용하였다. 모형의 예측 성능 비교 결과 1시간에서 3시간의 단기 예측에 있어서 ARMA-GARCH 모형이 우수한 예측력을 보였다. 6시간 이후 예측에서는 신경망 모형이 우수한 예측을 보였다.

스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구 (A study on electricity demand forecasting based on time series clustering in smart grid)

  • 손흥구;정상욱;김삼용
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.193-203
    • /
    • 2016
  • 본 논문은 ICT기반 시장에서의 수요관리시스템에서의 핵심 요소인 전력 수요 예측을 위하여, 전체 사용량을 기반으로 예측 하는 방식이 아닌, 시계열 기반 군집분석을 통한 군집별 예측량의 결합을 실시하였다. 시계열 군집 분석 방법으로서 Periodogram 기반의 정규화 군집분석, 예측 기반의 군집분석, DTW(Dynamic Time Warping)를 이용하여 군집화를 시도하였으며, 군집 별 수요예측 모형으로서 DSHW(Double Seasonal Holt-Winters) 모형, TBATS(Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components) 모형, FARIMA(Fractional ARIMA) 모형을 사용하여 예측을 실시하였다. 전체 사용량을 기반으로 예측 하는 방식이 아닌, 군집분석을 통한 군집별 예측량의 결합이 더 낮은 MAPE로 나타남에 따라 우수한 예측 방법으로 판단되었다.

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

특정 시간대 전력수요예측 시계열모형 (Electricity forecasting model using specific time zone)

  • 신이레;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.275-284
    • /
    • 2016
  • 정확한 전력수요 예측은 에너지 소비를 줄이고 전력수급의 불균형을 방지한다. 본 연구는 외부요인의 영향을 가장 적게 받는 특정 시간대의 일 단위 전력 수요량을 참조선 (reference line)으로 한 시계열모형을 세우고자 한다. 고려된 시계열모형은 슬라이딩 창을 이용한 이중 계절성 Holt-Winters 모형과 TBATS 모형이다. 시계열모형의 모수는 2009년 1월 4일부터 2011년 12월 31일까지 자료를 이용하여 추정되었으며, 2012년 1월 1일부터 2012년 12월 29일까지의 각 모형의 전력수요량을 예측하여 성능을 비교하였다. RMSE와 MAPE를 통해 예측 성능을 비교한 결과 TBATS 모형의 성능이 우수하였다.

NetFlow 데이터를 이용한 실시간 네트워크 트래픽 어노멀리 검출 기법 (A Real-Time Network Traffic Anomaly Detection Scheme Using NetFlow Data)

  • 강구홍;장종수;김기영
    • 정보처리학회논문지C
    • /
    • 제12C권1호
    • /
    • pp.19-28
    • /
    • 2005
  • 최근 알려지지 않은 공격(unknown attack)으로부터 네트워크를 보호하기 위한 네트워크 트래픽 어노멀리(anomaly) 검출에 대한 관심이 고조되고 있다. 본 논문에서는 캠퍼스 네트워크의 보드라우터(border router)의 NetFlow 데이터로 제공되는 초당비트수(bits per second)와 초당플로수(flows per second)의 상관관계를 단순회귀분석을 통하여 새로운 어노멀리 검출 기법을 제시하였다. 새로이 제안된 기법을 검증하기 위해 실지 캠퍼스 네트워크에 적용하였으며 그 결과론 Holt-Winters seasonal(HWS) 알고리즘과 비교하였다. 특히, 제안된 기법은 기존 RRDtool에 통합시켜 실시간 검출이 가능하도록 설계하였다.

모수 절약 주기적 자기회귀 모형에 관한 연구 (A study on parsimonious periodic autoregressive model)

  • 이지호;성병찬
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.133-144
    • /
    • 2016
  • 본 논문에서는 주기적 자기회귀(periodic autoregressive) 모형에서 모수의 수를 줄이기 위한 모수 절약 주기적 자기회귀 모형을 연구하였다. 제안된 모수 절약 모형은 실증분석에서 실업률을 이용하여 기존의 계절 시계열 모형과 비교를 통하여 그 성능을 평가하였다. 모수 절약 구조를 부여하기 위하여 계절성에서 공통된 패턴을 찾아내는 방법을 사용하였으며 기존 주기적 자기회귀 모형과의 통계적 차이 유무는 LR 검정을 통해 확인하였다. 그 결과, 중장기적으로 주기적 자기회귀 모형이 기존의 계절시계열 모형보다 우수한 예측성능을 보였으며, 특히 모수 절약 주기적 자기 회귀 모형의 사용은 기존의 주기적 자기회귀 모형보다 우수한 예측성능을 나타내는 것을 확인하였다.

시계열 모형을 이용한 KTX 여객 수요예측 연구 (A Study on Demand Forecasting for KTX Passengers by using Time Series Models)

  • 김인주;손흥구;김삼용
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1257-1268
    • /
    • 2014
  • KTX에 등장에 따라 국내 여객시장은 KTX 시장을 중심으로 변화가 이루어졌다. 이에 따라 KTX 이용 여객의 수요예측은 열차 운영에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 KTX 이용 여객의 수요와 연관이 있는 요일과 공휴일, 명절을 어떠한 형태로 고려할 것인지 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Errors (MAPE)를 사용하였으며, 1달간의 단기간 예측에 있어서 변동성을 고려해줄 수 있는 Reg-AR-GARCH 모형이 우수한 예측력을 나타냈으며, 1달을 초과한 기간의 예측에서는 Reg-ARMA 모형이 우수한 예측력을 나타냈다.

엔트로피 기반의 이상징후 탐지 시스템 (An Anomalous Event Detection System based on Information Theory)

  • 한찬규;최형기
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권3호
    • /
    • pp.173-183
    • /
    • 2009
  • 본 논문에서는 엔트로피에 기반한 이상징후 탐지 시스템을 제안한다. 엔트로피는 시스템의 무질서정도를 측정하는 지표로써, 이상징후 출현 시 네트워크의 엔트로피는 급증한다. 네트워크를 IP와 포트번호를 기준으로 분류하여, 패킷별로 역학을 관찰하고 엔트로피를 각각 측정한다. 분산서비스거부공격이나 웜, 스캐닝 등의 네트워크 공격 출현 시 패킷 교환과정이 정상적일 때와는 다르므로 엔트로피를 통하여 기존기법 보다 높은 탐지율로 이상징후를 탐지할 수 있다. 본 논문에서는 다수의 원과 서비스거부공격을 포함한 데이터 셋을 수집하여 제안기법을 검증하였다. 또한 지수평활법, Holt-winters 등의 시계열예측 기법과 주성분분석을 이용한 이상징후 탐지 기법과 정확도 측면에서 비교한다. 본 논문에서 제안한 기법으로 웜, 서비스거부공격 등의 이상징후 탐지에 있어 오탐지율을 낮출 수 있다.