• Title/Summary/Keyword: Holstein male calves

Search Result 29, Processing Time 0.026 seconds

Effect of once-a-day milk feeding on behavior and growth performance of pre-weaning calves

  • Syed Husnain Mushtaq;Danish Hussain;Hifz-ul-Rahman;Muhammad Naveed-ul-Haque;Nisar Ahmad;Ahmad Azeem Sardar;Ghazanfar Ali Chishti
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Objective: The objectives of the present study were to evaluate the effects of once-a-day milk feeding on growth performance and routine behavior of preweaning dairy calves. Methods: At 22nd day of age, twenty-four Holstein calves were randomly assigned to one of two treatment groups (n = 12/treatment) based on milk feeding frequency (MF): i) 3 L of milk feeding two times a day; ii) 6 L of milk feeding once a day. The milk feeding amount was reduced to half for all calves between 56 and 60 days of age and weaning was done at 60 days of age. To determine the increase in weight and structural measurements, each calf was weighed and measured at 3 weeks of age and then at weaning. The daily behavioral activity of each calf was assessed from the 22nd day of age till weaning (60th day of age) through Nederlandsche Apparatenfabriek (NEDAP) software providing real-time data through a logger fitted on the calf's foot. Results: There was no interaction (p≥0.17) between MF and sex of the calves for routine behavioral parameters, body weight and structural measurements. Similarly, there was no effect of MF on routine behavioral parameters, body weight and structural measurements. However, the sex of the calves affected body weight gain in calves. Male calves had 27% greater total body weight and average daily gain than female calves. There was no effect of the sex of the calves on behavioral measurements. Collectively, in the current study, no negative effects of a once-a-day milk feeding regimen were found on routine behavioral and growth parameters of preweaning calves in group housing. Conclusion: Once-a-day milk feeding can be safely adopted in preweaning calves from 22nd day of age.

Effects of Supplemental Mannanoligosaccharides on Growth Performance, Faecal Characteristics and Health in Dairy Calves

  • Kara, Cagdas;Cihan, Huseyin;Temizel, Mutlu;Catik, Serkan;Meral, Yavuz;Orman, Abdulkadir;Yibar, Artun;Gencoglu, Hidir
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1599-1605
    • /
    • 2015
  • Twenty Holstein calves were used to investigate the effects of mannanoligosaccharides (MOS) supplementation in the whole milk on growth performance, faecal score, faecal pH, selected faecal bacterial populations and health during the preweaning period. Healthy calves selected by clinical examination were allocated to one of the two groups (control [CG] and experimental [EG]) at 5 days old. Each group consisted of 5 male and 5 female calves. Each calf in EG was supplemented with 7 g/d of a MOS product (Celmanax) from 5 days to 56 days of age. MOS supplement was mixed with the whole milk once in the morning and administered to the calves in EG via nipple bottle, whereas the calves in CG were fed the whole milk without MOS. Calves were weaned at 56 days of age. The final body weight, average daily weight gain (ADG) and average daily feed intake (ADFI) were statistically similar (p>0.05) but were higher by 3.70%, 6.66%, and 10.97%, respectively, in MOS than in control calves. Feed efficiency (ADG/ADFI) was also similar in two calves group. While faecal scores did not differ on day 5, 7, 14, 21, 28, 42, 49, and 56 between groups, EG had a higher faecal score (p = 0.05) than CG on day 35. Faecal concentration of Lactobacillus was lower (p<0.05) in EG compared with CG. No differences (p>0.05) in faecal concentrations of Bifidobacterium, Clostridium perfringens, and Escherichia coli were found between groups. Although there were no significant differences (p>0.05) in the incidence of diarrhoea, treatment days for diarrhoea and the costs associated with diarrhoea treatments between groups, collectively, the observed reductions in treatment days and the cost of diarrhoea treatments accompanying increases in final body weight, ADG and ADFI for EG may indicate potential benefit of MOS in treatment of diarrhoea.

Association of Length of Pregnancy with Other Reproductive Traits in Dairy Cattle

  • Nogalski, Zenon;Piwczynski, Dariusz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • The experiment involved observations of 2,514 Holstein-Friesian cows to determine the effects of environmental factors (cow's age, calving season, weight and sex of calves, housing system) and genetic factors on gestation length in dairy cattle and the correlation between gestation length and other reproductive traits (calving ease, stillbirth rates and placental expulsion). Genetic parameters were estimated based on the sires of calved cows (indirect effect) and the sires of live-born calves (direct effect). The following factors were found to contribute to prolonged gestation: increasing cow's age, male fetuses and growing fetus weight. Optimal gestation length was determined in the range of 275-277 days based on calving ease and stillbirth rates. The heritability of gestation length was estimated at 0.201-0.210 by the direct effect and 0.055-0.073 by the indirect effect. The resulting genetic correlations suggest that the efforts to optimize (prolong) gestation length could exert an adverse influence on the breeding value of bulls by increasing perinatal mortality and calving difficulty. The standard errors of the investigated parameters were relatively high, suggesting that any attempts to modify gestation length for the purpose of improving calving ease and reducing stillbirth rates should be introduced with great caution.

Dairy cow and calf behavior and productivity when maintained together on a pasture-based system

  • Sarah E., Mac;Sabrina, Lomax;Cameron E.F., Clark
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.322-332
    • /
    • 2023
  • Objective: We determined the impact of maintaining pasture-based dairy cows and calves together over 100 days on cow milk production, cow and calf behavior, and calf liveweight and carcass quality. Methods: Six Holstein-Friesian cows and their male calves were monitored for 106±8.6 days. Cows were temporarily separated twice a day for milking with calves remaining in the paddock. Cow and calf behaviors were recorded via scan sampling at 6 different timepoints, for the first 7 days and twice a week thereafter. Calves were weighed weekly and immediately processed for meat quality and rumen development analysis at 106±8.6 days. Daily cow milk yields were collected from enrollment until 109±8.6 days (3 days post-weaning). Results: The average daily gain of calves was 1.4±0.73 kg/d, with an average carcass dressing percentage of 59%. Calves had the greatest frequency of observed close proximity to cow and suckling in the first two weeks and decreased with experiment duration. During separation for milking, cow vocalizations and attempts to return to their calf decreased over time. Reticulorumen weight was on target for calf age, but as a proportion of total stomach weight was lower than industry averages of calves the same age due to the larger abomasum. Cows produced an average of 12±7.6 kg of milk yield per day over the 3-days before the calves were weaned and increased to mean of 31±8.3 kg/d the 3 days after weaning, indicating a consumption of close to 20 kg per calf per day. Conclusion: The impact of a pasture-based cow-calf rearing system on cow and calf behavior and the potential for high levels of calf liveweight gain when provided ad-libitum milk and feed were determined. Further research is required to determine the practicality of replicating such systems with large herds and impact on reared calves post-weaning.

Production of Chimera by Embryos Aggregation Techniques in Bovine - Review-

  • Suzuki, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.8
    • /
    • pp.1188-1195
    • /
    • 2001
  • A tetraparental chimeric bull was successfully produced by aggregating bovine IVF embryos of F1 (female Holstein${\times}$male Japanese Black) and F1(female Japanese Brown${\times}$male Limousin) and culturing in vitro without the zona pellucida at Yamaguchi Research Station in Japan. In the microsatellite genotyping, 12% (28/228) microsatellite primer sets ware potentially useful for this parentage analysis in the chimeric bull, 78.6% (22/28) of microsatellite present in the chimeric bull were uniquely contributed from the Japanese Black and 21.4% (6/28) from Limousin. This chimeric bull semen was used in producing IVF embryos. The chromosome preparations were made from peripheral lymphocytes. Based on chromosome analysis the Chimera had apparently normal chromosomes (29 acrocentric pairs, one large sub metacentric X chromosome and one small sub metacentric Y chromosome). The proportion of acrosome reacted spermatozoa after 1 h of incubation was higher (p<0.01) with the Chimera than with the Holstein and in Japanese Brown bulls. But did not differ from Japanese Black and Limousin bull sperm. Fertilization rates observed after 5 h of sperm-oocyte incubation with Chimera sperm were higher (p<0.05) than with Japanese Brown and (p<0.01) than with Holstein sperm, but did not differ from Japanese Black and Limousin sperm. The cleavage rates of IVF oocytes inseminated with Chimera sperm were also higher (p<0.001) compared with Holstein, (p<0.01) Japanese Brown and (p<0.05) Limousin, but did not differ from Japanese Black sperm. The blastocyst rates of IVM oocytes inseminated with sperm were higher (p<0.05) than in Limousin, Japanese Brown and Holstein, but did not differ from Japanese Black. Chimeric cattles were produced by aggregation of parthenogenetic (Japanese Brown) and in vitro fertilized (Holstein) bovine embryos at the Yamaguchi Research Station in Japan and by aggregation of parthenogenetic (Red Angus) and in vitro fertilized (Holstein) embryos at the St. Gabriel Research Station in Louisiana. The aggregation rate of the reconstructed demi-embryos cultured in vitro without agar embedding was significantly lower than with agar embedding. The aggregation was also lower when the aggregation resulted from a whole parthenogenetic and IVF-derieved embryos cultured without agar than when cultured with agar. The development rate to blastocysts, however, was not different among the treatment. To verify parthenogenetic and the cells derieved from the male IVF embryos in blastocyst formation, 51 embryos were karyotyped, resulting in 27 embryos having both XX and XY chromosome plates in the same sample, 14 embryos with XY and 10 embryos with XX. The viability and the percentage of zonafree chimeric embryos at 24 h following cryopreservation in EG plus T with 10% PVP were significantly greater than those cryopreserved without PVP. Pregnancies were diagnosed in both stations after the transfer of chimeric blastocysts. Twin male and single chimeric calves were delivered at the Yamaguchi station, with each having both XX and XY chromosomes detected. Three pregnancies resulted from the transfer of 40 chimeric embryos at the Louisiana station. Two pregnancies were Jost prior to 4 months and one phenotypically chimeric viable male born.

Calves Derived from in Vivo Frozen-Thawed Embryos Collected from Canada Holstein Friesian Cows with High Genetic Background (캐나다산 고능력 젖소에서 생산된 동결-융해 배아 유래의 송아지 생산)

  • Lee, Won-You;Lee, Woo-Sung;Kim, Hyung-Jong;Kim, Bong-Han;Hong, So-Gun;Lee, Byeong-Chun;Jang, Goo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.2
    • /
    • pp.154-158
    • /
    • 2010
  • Embryo Transfer (ET) is one of the assisted reproductive technologies and a useful tool for improving herds. The purpose of this study is to produce the calves using frozen embryos which were produced in the top one percent Holstein in Canada by ET. One hundred seventeen recipients were used for surrogate mothers and seventy cows were diagnosed to be pregnant. Fifty seven calves were born successfully and thirteen out of them failed to produce viable calves (abortion: 4, stillbirth: 9). Their gestational length, birth body weight and sex ratio for all the viable calves(n = 57) were $278.1{\pm}3.6$ days (range: from 271 to 286 days), $44.0{\pm}3.0\;kg$ (range: from 37 to 49 kg) and 57.9 vs. 42.1 % (male 33 and female 24), respectively. Microsatellite analysis confirmed that they were derived from frozen embryos. In conclusion, this study demonstrated that viable calves derived from frozen-thawed embryos from Canada were born by ET.

Identification of Sperm mRNA Biomarkers Associated with Sex-Determination in Korean Native Cows

  • Min, Kwan-Sik;Byambaragchaa, Munkhzaya;Kim, Hyun;Park, Myung-Hum
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • This study was conducted to analyze the specific genes associated with sex-determination in Korean native cow. The highly organized spermatogenesis requires accurate spatial and temporal regulation of gene expression, which is governed by transcriptional, post-transcriptional, and epigenetic processes. Recently, farmers have been interested in determining the sexual identity of the calves in their farm. We analyzed the sperm of Korean native and Holstein cows, which were supplied from Hanwoo Improvement Center. We evaluated sperm motility and expression of sperm-specific genes after treating semen with both male- and female reagents. Sperm motility in Korean native cows decreased by approximately 10% in the first 30 minutes after treatment with sex-determination reagent. However, sperm motility of Holstein cows decreased to 60-70% after 15 minutes and to 20-30% after 30 minutes. We selected six specific genes expressing in the spermatozoa to analysis the gene expression level. The Real-time PCR results suggest that the selected genes (Gimap4, Tmeff1, Rac2, Abi2, Rac1, and Clu) were highly expressed in the group treated with the male reagent compared to the group treated the female reagent and to the untreated-group (control). In the present study, we suggest that the selected genes play a pivotal role in sex-determination.

PLASMA ALLANTOIN CONCENTRATION IN RESPONSE TO CHANGES IN NUTRITIONAL STATUS OF CALVES

  • Kagiyama, K.;Funaba, M.;Iriki, T.;Abe, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 1996
  • Two experiments were conducted to search factor(s) affecting the plasma allantoin concentration in infant calves. In experiment 1, five male Holstein calves aged 1 week were given only milk replacer free from nucleic acids for 28 days Plasma allantoin concentration varied in a reverse proportion to daily amounts of milk replacer, and the concentration when calves received 750 g/d of milk replacer was significantly lower than that when they received 250 g/d. Contrary to plasma allantoin concentration, glomerular filtration rate(GFR) was directly proportional to daily amounts of milk replacer, leading to a constant filtration of allantoin across the glomeruli. Renal handling of allantion was also unaffected by the amount of milk replacer, resulting in the constant urinary excretion of allantoin. These results suggested that GFR, which was affected by the nutritional status, could affect plasma allantoin concentration. In experiment 2, the effect of age-related changes in nutritional status after weaning on GFR was examined in eight calves weaned at 5 weeks of age. The GFR expressed as body weight basis was lower immediately after weaning, but linearly increased up to the 19th week post-weaning. The present results suggested that the changes in GFR in response to nutritional status would be one of the possible causes of atypical plasma allantoin concentration immediately after weaning. We conclude that plasma allantoin concentration would not be a proper estimator of intestinal flow of microbial protein in cattle.

Cloning of Farm Animals in Japan; The Present and the Future

  • Shioya, Yasuo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2001.10a
    • /
    • pp.37-43
    • /
    • 2001
  • 1. About fifty thousand of cattle embryos were transferred and 16000 ET-calves were born in 1999. Eighty percents of embryos were collected from Japanese Black beef donors and transferred to dairy Holstein heifers and cows. Since 1985, we have achieved in bovine in vitro fertilization using immature oocytes collected from ovaries of slaughterhouse. Now over 8000 embryos fertilized by Japanese Black bull, as Kitaguni 7~8 or Mitsufuku, famousbulls as high marbling score of progeny tests were sold to dairy farmers and transferred to their dairy cattle every year. 2. Embryo splitting for identical twins is demonstrated an useful tool to supply a bull for semen collection and a steer for beef performance test. According to the data of Dr. Hashiyada(2001), 296 pairs of split-half embryos were transferred to recipients and 98 gave births of 112 calves (23 pairs of identical twins and 66 singletons). 3. A blastomere-nuclear-transferred cloned calf was born in 1990 by a joint research with Drs. Tsunoda, National Institute of Animal Industry (NIAI) and Ushijima, Chiba Prefectural Farm Animal Center. The fruits of this technology were applied to the production of a calf from a cell of long-term-cultured inner cell mass (1988, Itoh et al, ZEN-NOH Central Research Institute for Feed and Livestock) and a cloned calf from three-successive-cloning (1997, Tsunoda et al.). According to the survey of MAFF of Japan, over 500 calves were born until this year and a glaf of them were already brought to the market for beef. 4. After the report of "Dolly", in February 1997, the first somatic cell clone female calves were born in July 1998 as the fruits of the joint research organized by Dr. Tsunoda in Kinki University (Kato et al, 2000). The male calves were born in August and September 1998 by the collaboration with NIAI and Kagoshima Prefecture. Then 244 calves, four pigs and a kid of goat were now born in 36 institutes of Japan. 5. Somatic cell cloning in farm animal production will bring us as effective reproductive method of elite-dairy- cows, super-cows and excellent bulls. The effect of making copy farm animal is also related to the reservation of genetic resources and re-creation of a male bull from a castrated steer of excellent marbling beef. Cloning of genetically modified animals is most promising to making pig organs transplant to people and providing protein drugs in milk of pig, goat and cattle. 6. Farm animal cloning is one of the most dreamful technologies of 21th century. It is necessary to develop this technology more efficient and stable as realistic technology of the farm animal production. We are making researches related to the best condition of donor cells for high productivity of cloning, genetic analysis of cloned animals, growth and performance abilities of clone cattle and pathological and genetical analysis of high rates of abortion and stillbirth of clone calves (about 30% of periparutum mortality). 7. It is requested in the report of Ministry of Health, labor and Welfare to make clear that carbon-copy cattle(somatic cell clone cattle) are safe and heathy for a commercial market since the somatic cell cloning is a completely new technology. Fattened beef steers (well-proved normal growth) and milking cows(shown a good fertility) are now provided for the assessment of food safety.

  • PDF

Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves

  • Guo, Yongqing;Li, Zheng;Deng, Ming;Li, Yaokun;Liu, Guangbin;Liu, Dewu;Liu, Qihong;Liu, Qingshen;Sun, Baoli
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.204-216
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effects of dietary supplementation with a multi-strain probiotic (MSP) product containing of Bifidobacterium animalis, Lactobacillus casei, Streptococcus faecalis, and Bacillus cerevisiae on growth, health, and fecal bacterial composition of dairy calves during the first month of life. Methods: Forty Holstein calves (24 female and 16 male) at 2 d of age were grouped by sex and date of birth then randomly assigned to 1 of 4 treatments: milk replacer supplementation with 0 g (0MSP), 2 g (2MSP), 4 g (4MSP), and 6 g (6MSP) MSP per calf per day. Results: Supplementation of MSP did not result in any significant differences in parameters of body measurements of calves during the 30 d period. As the dosage of MSP increased, the average daily gain (p = 0.025) and total dry matter intake (p = 0.020) of calves showed a linear increase. The fecal consistency index of the 2MSP, 4MSP, and 6MSP group calves were lower than that of the 0MSP group calves (p = 0.003). As the dosage of MSP increased, the concentrations of lactate dehydrogenase (p = 0.068) and aspartate aminotransferase (p = 0.081) in serum tended to decrease, whereas the concentration of total cholesterol increased quadratically (p = 0.021). The relative abundance of Dorea in feces was lower (p = 0.011) in the 2MSP, 4MSP, and 6MSP group calves than that in the 0MSP group calves. The relative abundance of Dorea (p = 0.001), Faecalibacterium (p = 0.050), and Mitsuokella (p = 0.030) decreased linearly, whereas the relative abundance of Prevotella tended to increase linearly as the dosage of MSP increased (p = 0.058). Conclusion: The MSP product can be used to reduce the diarrhea, improve the performance, and alter the composition of the fecal bacteria in neonatal dairy calves under the commercial conditions.