• Title/Summary/Keyword: Holonomic System

Search Result 45, Processing Time 0.02 seconds

Development of Indoor Locomotion Assistive Robot, Ball-Chair, for the Elderly (고령자를 위한 실내 이동 보조 로봇 볼체어의 개발)

  • Kim, Woo-Yong;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.799-807
    • /
    • 2014
  • This paper describes the development of an indoor locomotion assistive robot, Ball-Chair, comprising a novel drive system. This robot facilitates locomotion assistive operation in narrow spaces, in which common wheelchairs cannot move easily. The Ball-Chair has two main features: its structural feature and driving mechanism. The exoskeleton frames of the Ball-Chair have been designed with octagonal shapes resembling a circle, for minimizing its volume and weight. Additionally, all its driving parts (including the ball) are mounted within of the robot to enhance its safety. The Ball-Chair features a reverse ball-mouse driving mechanism comprising two driving omni-wheels in the x- and y-axes. By controlling the speed of each omni-wheel, a holonomic driving system that can facilitate omnidirectional locomotion has been achieved using only two wheels. The effective movement of the Ball-Chair in any direction within narrow indoor spaces was experimentally verified. The paper outlines the development procedure in detail.

THE ATTITUDE STABILITY ANALYSIS OF A RIGID BODY WITH MULTI-ELASTIC APPENDAGES AND MULTI-LIQUID-FILLED CAVITIES USING THE CHETAEV METHOD

  • Kuang, Jin-Lu;Kim, Byung-Jin;Lee, Hyun-Woo;Sung, Dan-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.209-220
    • /
    • 1998
  • The stability problem of steady motion of a rigid body with multi-elastic appendages and multi-liquid-filled cavities, in the presence of no external forces or torque, is considered in this paper. The flexible appendages are modeled as the clamped -free-free-free rectangular plates, or/and as the discrete mass- spring sub-system. The motion of liquid in every single ellipsoidal cavity is modeled as the uniform vortex motion with a finite number of degrees of freedom. Assuming that stationary holonomic constraints imposed on the body allow its rotation about a spatially fixed axis, the equation of motion for such a systematic configuration can be very complex. It consists of a set of ordinary differential equations for the motion of the rigid body, the uniform rotation of the contained liquids, the motion of discrete elastic parts, and a set of partial differential equations for the elastic appendages supplemented by appropriate initial and boundary conditions. In addition, for such a hybrid system, under suitable assumptions, their equations of motion have four types of first integrals, i.e., energy and area, Helmholtz' constancy of liquid - vortexes, and the constant of the Poisson equation of motion. Chetaev's effective method for constructing Liapunov functions in the form of a set of first integrals of the equations of the perturbed motion is employed to investigate the sufficient stability conditions of steady motions of the complete system in the sense of Liapunov, i.e., with respect to the variables determining the motion of the solid body and to some quantities which define integrally the motion of flexible appendages. These sufficient conditions take into account the vortexes of the contained liquids, the vibration of the flexible components, and coupling among the liquid-elasticity solid.

  • PDF

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.

A PD-Fuzzy Controller Design of 2 D.O.F. Wheeled Mobile Robot Using Genetic and Immune Algorithm (유전 및 면역 알고리즘을 이용한 2자유도 구륜 이동 로봇에 대한 PD-Fuzzy 제어기 설계)

  • Kim, Sung-Hoe;Kim, Ki-Yeoul;Lim, Ho;Park, Chong-Kug
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.19-28
    • /
    • 2000
  • It is not so easy to control the wheeled mobile robot because of some causes like non-holonomic constraints. To overcome these problems, a controller that PD system is combined with fuzzy process is composed of several steps that have each separate algorithm and niche search algorithm and immune algorithm is applied partly. Output term set is changed by search that is performed to get optimal elements and then the rule base is also reformed. The fitness for the altered system is estimated and the surplus elements are removed. After the adjustment of output term set and rule base is finished, input and output membership functions is tuned.

  • PDF