• Title/Summary/Keyword: Holographic Interferometry

Search Result 86, Processing Time 0.019 seconds

Nondestructive Testing of Residual Stress on the Welded Part of Butt-welded A36 Plates Using Electronic Speckle Pattern Interferometry

  • Kim, Kyeongsuk;Jung, Hyunchul
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • Most manufacturing processes, including welding, create residual stresses. Residual stresses can reduce material strength and cause fractures. For estimating the reliability and aging of a welded structure, residual stresses should be evaluated as precisely as possible. Optical techniques such as holographic interferometry, electronic speckle pattern interferometry (ESPI), Moire interferometry, and shearography are noncontact means of measuring residual stresses. Among optical techniques, ESPI is typically used as a nondestructive measurement technique of in-plane displacement, such as stress and strain, and out-of-plane displacement, such as vibration and bending. In this study, ESPI was used to measure the residual stress on the welded part of butt-welded American Society for Testing and Materials (ASTM) A36 specimens with $CO_2$ welding. Four types of specimens, base metal specimen (BSP), tensile specimen including welded part (TSP), compression specimen including welded part (CSP), and annealed tensile specimen including welded part (ATSP), were tested. BSP was used to obtain the elastic modulus of a base metal. TSP and CSP were used to compare residual stresses under tensile and compressive loading conditions. ATSP was used to confirm the effect of heat treatment. Residual stresses on the welded parts of specimens were obtained from the phase map images obtained by ESPI. The results confirmed that residual stresses of welded parts can be measured by ESPI.

Quality Enhancement of a Complex Holographic Display Using a Single Spatial Light Modulator and a Circular Grating

  • Bang, Le Thanh;Piao, Yan Ling;Kim, Jong Jae;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • This paper proposes an optical system for complex holographic display that enhances the quality of the reconstructed three-dimensional image. This work focuses on a new design for an optical system and the evaluation of the complex holographic display, using a single spatial light modulator (SLM) and a circular grating. The optical system is based on a 4-f system in which the imaginary and real information of the hologram is displayed on concentric rectangular areas of the SLM and circular grating. Thus, this method overcomes the lack of accuracy in the pixel positions between two window holograms in previous studies, and achieves a higher intensity of the real object points of the reconstructed hologram than the original phase-reconstructed hologram. The proposed method provides approximately 30% less NMRS (Normal Root Mean Square) error, compared to previous systems, which is verified by both simulation and optical experiment.

ATInSAR HOLOGRAM OBSERVATIONS OF COASTAL WAVE REFARCTION

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This study is introducing a new approach of ATInSAR hologram for modeling wave refraction spectra pattern. TOPSAR data with L$_{-HH}$ and C-vv bands utilized spatial variation of wave refraction. Based on the phase information in along track interferometry, and ATInSAR hologram the quantitative information such swell wave height and spectra energy have been modeled. The phase information in ATInSAR hologram images can be transferred to wave refraction The ATInSAR hologram can be used to investigate the wave refraction pattern along the coastal waters. The fringe information pattern was shown to be useful in modeling wave refaction spectra varaition. The hologram interferometry wave refraction model consists of two sub-models. The purpose of first sub-model is to determine the swell wave height by using ATInSAR. Second sub-model aims to generate the holographic interferometry from the information of two wave spectra which detected by ATInSAR technique. The azimuth cut-off variations along the fringe patterns will be estimated. As azimuth cut-off contains the wave height information which could be used the significant wave height variation in convergence and divergence zone.

  • PDF

Quantitative Interpretation of Holographic Interferometry using Carrier Fringe and Digital Image Processing Technique (무늬 반송법과 디지털 영상처리를 이용한 홀로그래피 간섭무늬의 정량적 해석)

  • 고영욱
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.168-171
    • /
    • 1991
  • 홀로그래피 간섭무늬로부터 변형의 요철방향을 구하기 위하여 무늬반송법을 응용하였다. 변형에 의해 형성된 간섭무늬의 차수가 기준무늬를 따라 한 방향으로 증가하도록 하였으며, 디자탈 영상처리 기술을 이용하여 간섭무늬 해석을 자동화 하였다.

  • PDF

Simultaneous measurement of in-plane and out-of-plane displacement using holographic interferometry (홀로그래피 간섭계를 이용한 횡변위와 종변위의 동시 측정)

  • 김달우;임부빈
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.267-276
    • /
    • 1997
  • We set up a four-wave holographic interferometer using a symmetric dual-beam illumination which is to measure in-plane and out-of-plane displacement simultaneously. In order to acquire the displacement phase map we applied the phase-shifting method and removed the noise of the phase map with least-squares fitting. In this approach the access to information relative to both the difference and sum of phases existing in the two arms of four-wave holographic interferometer was allowed. As a result, in-plane and out-of-plane displacement was measured to the accuracy of λ/40 and λ/100, respectively at λ=632.8nm

  • PDF

Improving Phase Contrast of Digital Holographic Microscope using Spatial Light Modulator

  • Le, Thanh Bang;Piao, Meilan;Jeong, Jong-Rae;Jeon, Seok-Hee;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • We propose a new method for improving the phase contrast of a multiphase digital holographic microscope using a spatial light modulator (SLM). Using the SLM as the annulus, our method improves the light contrast of the object edge to achieve higher accuracy. We demonstrate a digital holographic microscopy technique that provides a 30% improvement in the phase contrast compared to conventional microscopy, which utilizes a mechanical annulus. The phase-contrast improvement allows the 3D reconstructed hologram to be determined more precisely.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.

Three-key Triple Data Encryption Algorithm of a Cryptosystem Based on Phase-shifting Interferometry

  • Seok Hee Jeon;Sang Keun Gil
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.673-682
    • /
    • 2023
  • In this paper, a three-key triple data encryption algorithm (TDEA) of a digital cryptosystem based on phase-shifting interferometry is proposed. The encryption for plaintext and the decryption for the ciphertext of a complex digital hologram are performed by three independent keys called a wavelength key k1(λ), a reference distance key k2(dr) and a holographic encryption key k3(x, y), which are represented in the reference beam path of phase-shifting interferometry. The results of numerical simulations show that the minimum wavelength spacing between the neighboring independent wavelength keys is about δλ = 0.007 nm, and the minimum distance between the neighboring reference distance keys is about δdr = 50 nm. For the proposed three-key TDEA, choosing the deviation of the key k1(λ) as δλ = 0.4 nm and the deviation of the key k2(dr) as δdr = 500 nm allows the number of independent keys k1(λ) and k2(dr) to be calculated as N(k1) = 80 for a range of 1,530-1,562 nm and N(dr) = 20,000 for a range of 35-45 mm, respectively. The proposed method provides the feasibility of independent keys with many degrees of freedom, and then these flexible independent keys can provide the cryptosystem with very high security.

Visualization of Marangoni Convection Behavior between Two Surfactant Dropwises in the Process of Steam Absorption (증기흡수시(蒸氣吸收時) 계면활성제액적간(界面活性劑液滴間)에 발생(發生)하는 마랑고니대류거동(對流擧動)의 가시화(可視化))

  • Rie, D.H.;Choi, K.K.;Kashiwagi, T.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1992
  • In most absorption machines, absorption enhancement has been achieved by adding small amount of surfactant additive, which introduced the surface tension difference between absorbent and surfactant droplets in the vapor absorption. The aim of this study is to understand a basic mechanism of Marangoni convection and its effectiveness in the vapor absorption enhancement. In this study, nonflowing aqueous solution of LiBr 60 mass% was exposed to saturated water vapor under the condition that two dropwises surfactant were fixed on the absorbent surface. Our experiments achieved to visualize the enhanced heat and mass transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also, Marangoni convection behavior was obtained by using tracer method.

  • PDF