• Title/Summary/Keyword: Hollow morphology

Search Result 85, Processing Time 0.021 seconds

Effect of High-Temperature Spinning and PVP Additive on the Properties of PVDF Hollow Fiber Membranes for Microfiltration

  • Cha, Bong-Jun;Yang, Jung-Mok
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.596-602
    • /
    • 2006
  • The effect of high-temperature spinning and poly(vinyl pyrrolidone) (PVP) additive on poly(vinylidene fluoride) (PVDF) hollow fiber membranes was investigated using differential scanning calorimetry, X-ray diffraction measurement, and scanning electron microscopy, together with the corresponding microfiltration performances such as water flux, rejection rate, and elongational strength. Using high-temperature spinning, porous hollow fiber membranes with particulate morphology were prepared through PVDF crystallization. The particulate structure of the membranes was further modified by the addition of miscible PVP with PVDF. Due to these effects, the rejection rate and strength of the fibers were increased at the expense of reduced water flux and mean pore size, which indicates that high-temperature spinning and PVP addition are vary effective to control the morphology of PVDF hollow fiber membranes for microfiltration.

Preparation and Characterization of α-alumina Hollow Fiber Membrane (알루미나 중공사막 제조 및 특성 분석)

  • Che, Jin Woong;Lee, Hong Joo;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The alumina hollow fiber membranes were prepared by spinning and sintering a polymer solution containing suspended alumina powders. For determine pore structure of hollow fiber membranes formed by different solvent-nonsolvent interaction rate, dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) were prepared in dope solution by solvent, polyethersulfone (PESf) and polyvinylpyrrolidone (PVP) were used as a polymer binder and additive. The pore structure of hollow fiber membranes was characterized using scanning electron microscope (SEM). The alumina hollow fiber membranes prepared by DMSO, DMAc were had the asymmetric structure mixed sponge-like and finger-like morphology, while TEP solvent were had single sponge-like structure. The prepared hollow fiber membranes were analyzed gas permeation and mechanical strength experiment also. The hollow fiber membrane having single sponge-like structure was had high gas permeation performance. On the contrary to this, more finger-like morphology was less gas permeation performance.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

A Facile Approach to Fabrication of Hollow ZnO Nanoparticles

  • Cho, Gwang-Rae;Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.94-98
    • /
    • 2018
  • Well-defined, monodispersed hollow ZnO nanoparticles were successfully synthesized by a facile one-pot solution method at room temperature. Hollow ZnO nanoparticles were fabricated using polystyrene nanoparticles as seed particles. The removal of core particles via solvent extraction yields hollow nanoparticles. The structures and morphologies of the obtained products were characterized with Fourier transform infrared (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction pattern (XRD) and Scanning electron microscopy (SEM). The formation mechanism of the hollow structure of the ZnO nanoparticles was also investigated. The technique developed here is expected to be useful in the preparation other metal oxides and hollow architectures.

Modification of polyethersulfone hollow fiber membrane with different polymeric additives

  • Arahman, Nasrul;Mulyati, Sri;Lubis, Mirna Rahmah;Razi, Fachrul;Takagi, Ryosuke;Matsuyama, Hideto
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.355-365
    • /
    • 2016
  • The improvement of fouling resistance of porous polymeric membrane is one of the most important targets in membrane preparation for water purification in many process like wastewater treatment. Membranes can be modified by various techniques, including the treatment of polymer material, blending of hydrophilic polymer into polymer solution, and post treatment of fabricated membrane. This research proposed the modifications of morphology and surface property of hydrophobic membrane by blending polyethersulfone (PES) with three polymeric additives, polyvinylpyrrolidone (PVP), Pluronic F127 (Plu), and Tetronic 1307 (Tet). PES hollow fiber membranes were fabricated via dry-wet spinning process by using a spinneret with inner and outer diameter of 0.7 and 1.0 mm, respectively. The morphology changes of PES blend membrane by those additives, as well as the change of performance in ultrafiltration module were comparatively observed. The surface structure of membranes was characterized by atomic force microscopy and Fourier transform infra red spectroscopy. The cross section morphology of PES blend hollow fiber membranes was investigated by scanning electron microscopy. The results showed that all polymeric additives blended in this system affected to improve the performances of PES membrane. The ultra-filtration experiment confirmed that PES-PVP membrane showed the best performance among the three membranes on the basis of filtration stability.

Preparation of Silica Hollow Composite Particles

  • Lee, Dong Hoon;Lee, Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3303-3306
    • /
    • 2014
  • A facile and effective approach has been developed to prepare hybrid hollow microspheres, via consecutive processes of pickering mini-emulsion polymerization for core-shell formation, and calcination of the sacrificial core. The resulting hollow composite particles have mono-layered shells. The morphology and size characteristics of synthesized composite particles were investigated, using dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements.

Microporous Bellow Fiber Membrane Prepared from High Density Polyethylene/Ultra High Molecular Weight Polyethylene Blend (고밀도 폴리에틸렌/초고분자량 폴리에틸렌 블렌드로 제조한 미세다공성 중공사막)

  • 남주영;최승은;이광희;장문석;김진호;임순호
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.307-312
    • /
    • 2003
  • Hollow fiber was prepared from the blend of a high density polyethylene (HDPE)/ultra high molecular weight polyethylene (UHMWPE). The changes in the morphology and mechanical property of the hollow fiber were investigated. The commercial product (Sterapore), having a high water permeability, was analyzed with viscosity measurement and FT-IR. The molecular weight of Sterapore was very high and its surface was coated with a vinyl alcohol/vinyl acetate copolymer. The content of UHMWPE in the HDPE/UHMWPE blend was limited below 10 wt%. In order to improve the dispersion of UHMWPE, a mineral oil should be introduced in the blend. The morphology and mechanical property of the hollow fiber of HDPE/UHMWPE blend were similar to those of the commercial product.

Effects of the Characteristics of Precursor Powders and AlF3 Flux on the Properties of Blue-Emitting BAM:Eu Phosphor Powders (전구체의 특성 및 AlF3 융제가 청색 발광의 BAM:Eu 형광체의 특성에 미치는 영향)

  • Cho, Jung-Sang;Lee, Sang-Ho;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • Blue-emitting BAM:Eu phosphor powders were formed by post-treatment of precursor powders with hollow or dense morphologies. The morphologies of the precursor powders obtained by spray pyrolysis were controlled by changing the preparation conditions and by changing the type of spray solution. The effects of the morphologies of the precursor powders on the characteristics of the BAM : Eu phosphor powders reacted with $AlF_3$ flux were investigated. Precursor powders with a spherical shape and a hollow morphology produced BAM : Eu phosphor powders with a plate-like morphology, a fine size and a narrow size distribution. On the other hand, precursor powders with a spherical shape and dense morphology produced BAM : Eu phosphor powders with a plate-like morphology and a large size. $AlF_3$ flux improved the photoluminescence intensities of the BAM : Eu phosphor powders. The photoluminescence intensity of the fine-sized BAM : Eu phosphor powders with a plate-like morphology was 90% of the commercial product under vacuum ultraviolet conditions.

Preparation of PVDF Hollow Fiber Membrane via TIPS (Thermally Induced Phase Separation) and Stretching (열유도 상분리와 연신공정을 이용한 PVDF 중공사막의 제조)

  • Park, Minsoo;Kim, Jinho;Jang, Moonseog;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this research, microporous and bicontinuous poly vinylidene fluoride(PVDF) hollow fiber membranes were prepared via hybrid process of the thermally induced phase separation (TIPS) and stretching method. The mechanism of the membrane preparation is based on liquid-liquid phase separation. The final membranes have characteristic structures which have both bicontinuous and fibrillar morphology by applying the stretching method. They showed quite different structure when compared with the spherulitic or nodular structure from S/L TIPS and bicontinuous structure from L/L TIPS. At first, PVDF hollow fiber precursors were prepared via TIPS method using various kind of diluent mixtures. We used gamma-butyrolacton, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) as diluents. We could make hollow fiber membranes which had porous outer surface or dense outer surface by controling the parameters such as cooling conditions, PVDF concentration and the ratio of diluent mixtures. Finally, these hollow fiber were stretched at room temperature and diluents were extracted by ethanol. Effects of the stretching ratio on the membrane morphology were investigated using scanning electron microscope (SEM), and its effects on water flux, porosity, pore size, roughness and tensile strength were examined.

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.