• Title/Summary/Keyword: Hollow cathode tube

Search Result 14, Processing Time 0.029 seconds

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow Cathode Discharge Tube에서의 광검류 신호 측정)

  • Lee, Jun-Hoi;Yoon, Man-Young;Kim, Song-Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.874-877
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

A study of the hollow cathode discharge (HOLLOW CATHODE DISCHARGE의 방전 특성 연구)

  • Cho, S.M.;Seo, Y.W.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.139-141
    • /
    • 1989
  • The characteristics of the hollow cathode discharge were investigated. Temperature distribution of the hollow cathode was investigated and I-V curves of the hollow cathode discharge were obtained. In this paper variables are chamber pressure, Ar gas flow rate injected through the cathode tube and the gap distance between cathode and anode. The inter electrode electron temperature and density were measured by Langmuir probe.

  • PDF

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow cathode discharge tube에서의 광검류 신호 측정)

  • 이준회;정기주
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity, This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with change of the lowest metastable atoms density at low current.

Development of a Plasma Gun System for Ion Plating with Long Lifetime (이온 플레이팅용 장수명 플라즈마 건 장치의 개발)

  • Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.78-81
    • /
    • 2008
  • A hollow cathode which has extremely stable discharge characteristic has been developed. This is composed of the two separated lanthanum hexaboride(LaB6) of a disk type in the tube as the electron emitters. The way of design is of great advantage to extend the surface discharge area of the LaB6, which is also useful for optimal fixing of the LaB6. The hollow cathode is capable of producing 30 kW(100 V, 300 A) of power continuously. Because the generated plasma beam with the high temperature(above $3000^{\circ}C$) from the hollow cathode passes through the center hole of the two intermediate electrodes, it is designed with the high temperature material of the tungsten and the suitable structure of the water cooling. The combinations of the hollow cathode and the two intermediate electrodes are practically useful for the ion plating plasma beam source.

Study on Characteristics of Plasma in Hollow Cathode Discharge (Hollow Cathode Discharge에서 플라즈마 특성에 관한 연구)

  • Yoon, Man-Young;Shin, Jong-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.23 no.2
    • /
    • pp.93-101
    • /
    • 2005
  • The measured plasma temperature of Ar hollow cathode discharge for several metal cathodes are about $620\;{\sim}\;780K$ at discharge current of $7\;{\sim}\;10mA$. The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

Changes in the Optogalvanic Signal Amplitude in a Hollow Cathode Discharge

  • Lee, Jun-Hoi;Koo, Kyung-Wan;Lee, Ki-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.212-216
    • /
    • 2009
  • The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm ($1s_5-2p_8$ transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.

Development of a plasma gun for long lifetime (장수명 플라즈마 건의 개발)

  • Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.192-193
    • /
    • 2007
  • A hollow cathode which has extremely stable discharge characteristic has been developed. This is composed of the two separated lanthanum hexaboride ($LaB_6$) of a disk type in the tube as the electron emitters. The way of design is of great advantage to extend the surface discharge area of the $LaB_6$, which is also useful for optimal fixing of the $LaB_6$. The hollow cathode is capable of producing 30 kW (100 V, 300 A) of power continuously.

  • PDF

Various Cathode Design for Cu Emission Line In See-through Hollow Cathode Glow Discharge (st-HCGD) (관통형 속 빈 음극관 글로우 방전에서 다양한 음극관 디자인에 따른 구리방출선 세기 증가에 대한 연구)

  • Woo, Jeong-Soo;Park, Hyun-Kook;Kim, Yong-Seong;Choi, Kyu-Seong;Lee, Sang-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.351-357
    • /
    • 2004
  • We have investigated the intensity of Cu 510.6 nm emission line in see-through hollow cathode glow discharge (st-HCGD) for the development of medical Cu vapor laser. In order to acquire the stable plasma in st-HCGD cell at high current, several factors such as current, the length and the inner diameter of cathode tube, the shape of the tube, and the range of the sputtering range were tested. An optimum condition in our st-HCGD cell was obtained at 600 V, 700 mA, 2.3 Torr of Ar gas (100 SCCM), and 40 mm of tube with 4-11-4 mm type cathode design. Also, it was indirectly observed that temperature in the cell could reach more than $1,000{\circ}C$ since Cu cathode was melt at the current more than 700 mA (melting point of Cu, $1084{\circ}C$).

The Fundamental Studies and Development of the Modified See - Through Hollow Cathode Glow Discharge Cell for Atomic Emission Spectrochemical Analysis (원자 방출 분광 분석을 위한 개선된 관통형 속빈 음극관 글로우 방전 셀 개발 및 기초 연구)

  • Lee, Sung-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Borden, Stuart;Kim, Kyu-Whan;Lee, Change-Su;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.502-508
    • /
    • 2002
  • See-through hollow cathode glow discharge cell has been developed for the trace analysis of metal ions. The systems consists of new glow discharge cell improved the cooling system. In the case of previous type of hollow cathode glow discharge cell, it had been utilized for the trace analysis of metal ions but it had a problem that the plasma becomes unstable by air-cooled device. In this study, the modified hollow cathode glow discharge cell has been developed in order to minimize the problem associated with the air-cooled device. thus the stability of the plasma with water-cooling device has been improved and also the higher plasma temperature has been measured. The fundamental characteristics of modified systems have been investigated. And the discharge parameters, such as discharge pressure, material, and diameter of cathode, have been studied to find optimum discharge conditions.

TiN films by the HCD Ion plating (HCD법 이온플레이팅에 의한 TiN 박막제작)

  • Seo, Y.W.;Cho, S.M.;Kim, M.J.;Whang, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.335-337
    • /
    • 1989
  • The Charcteristics of the HCD ion plating system for TiN coating was Investigated. 1-V curvet of the HCD ( hollow cathode discharge ), radiation temperatures of the Ta tube and the Ti pool and the electron density and the temperature of the generated plasma are shown. The preferred orientation and the micro-hardness of coatings performed by HCD process are studied.

  • PDF