• Title/Summary/Keyword: Hollow Ratio

Search Result 317, Processing Time 0.022 seconds

A Study on the Potable Water Purification System with Pre-Ozone and Ultra Filtration Membrane of Hollow Fiber Type (전오존과 중공사형 한외여과막을 이용한 간이정수처리시스템에 관한 연구)

  • Kim, Min-Kuk;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.196-204
    • /
    • 2005
  • The objective of this study is to evaluate the possibility to apply pre-ozone and membrane system for drinking water. This system is improved in fouling control by pre-ozone system. It is composed of ultrafiltration hollow fiber type membrane and ozone reactor. The result of this study is that the flux is increased about 10.7% and decreased in TMP by the pre-ozone. Also, backwashing pressure decreased about 18%. The optimum concentration of residual ozone is 0.3~0.5 ppm. During the period, the recovery ratio of this system was turned out to be 90% as the flowrate of effluent is $67.1m^3/day$. When the TMP and backwashing pressure was $0.85kg/cm^2$ and $1.10kg/cm^2$, this system was stable without sudden fouling. Finally, the quality of effluent is satisfied the guidelines for potable water quality such as turbidity, color, E.coli, Mn, Al, Fe and so on.

Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation

  • Liu, Yongjian;Xiong, Zhihua;Feng, Yuncheng;Jiang, Lei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.455-465
    • /
    • 2017
  • This paper presents a series of ultimate and fatigue experimental investigation on concrete-filled rectangular hollow section (CRHS) X joints with Perfobond Leister rib (PBR) under tension. A total of 15 specimens were fabricated, in which 12 specimens were tested under ultimate tension and 3 specimens were investigated in fatigue test. Different parameters including PBR stiffening, brace-to-chord ratio (${\beta}$) and inclined angle (${\theta}$) were considered in the test. Each joint was tested to failure under tension load. Obtained from test result, PBR was found to improve the tension strength and fatigue durability of CRHS joint substantially. Concrete dowel consisted by PBR and concrete inside the chord stiffened the joint, which leaded to a combination failure mode of punching shear and chord plastification of CRHS joint under tension. Finite element analysis validated the compound failure mode. Stress concentration on typical spot of CRHS joint was mitigated by PBR which was observed from fatigue test. Initial fatigue crack presented in CRHS joint with PBR also differentiated with the counterpart without PBR.

Stability Studies of Biodegradable Polymersomes Prepared by Emulsion Solvent Evaporation Method

  • Lee Yu-Han;Chang Jae-Byum;Kim Hong-Kee;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.359-364
    • /
    • 2006
  • Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(D,L-lactide), were synthesized by ring-opening polymerization for preparing polymer vesicles (polymersomes). Emulsion solvent evaporation method was used to fabricate the polymersomes. Scanning electron microscope (SEM) images confirmed that polymersomes have a hollow structure inside. Confocal laser microscope and optical microscope were also used to verify the hollow structure of polymersomes. Polymersomes having various sizes from several hundred nanometers to a few micrometers were fabricated. The size of the polymersomes could be readily controlled by altering the relative hydrodynamic volume fraction ratio between hydrophilic and hydrophobic blocks in the copolymer structure, and by varying the fabrication methods. They showed greatly enhanced stability with increased molecular weight of PEG. They maintained their physical and chemical structural integrities after repeated cycles of centrifugation/re-dispersion, and even after treatment with surfactants.

A Study on the Characteristics of the MgO Thin Film Deposited by the Hollow Cathode Discharge Ion Plating Method (HCD 이온 플레이팅법에 의해 증착된 MgO박막의 특성에 관한 연구)

  • Chung, Woo-Joon;Jeong, Heui-Seob;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.200-202
    • /
    • 1996
  • MgO film was deposited on the glass substrate by the hollow cathode discharge ion plating method and the characteristics of the MgO thin film such as deposition rate, crystalline orientation, surface morphology and secondary electron coefficient were investigated. The deposition rate of MgO thin films were $430^{\sim}1270{\AA}$/min at various temperatures and biases. The crystalline orientation of the MgO thin film changed from (200) to (220) upon increasing the HCD current from 100A to 200A. These results indicated that the crystallin orientation of the MgO thin film was determined by the super-saturation ratio. The (200) peak decreased and the (220) peak increased as the substrate bias increased, while both peaks increased as the substrate temperature increased. The grain size increased as the substrate bias increased and the secondary electron emission coefficient increased as the substrate bias increased.

  • PDF

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

Axially-compressed behavior of CFRP strengthening steel short columns having defects

  • Omid Yousefi;Amin Shabani Ammari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.49-61
    • /
    • 2024
  • In recent decades, the majority of studies have concentrated on the utilization of Steel Square Hollow Section (SHS) columns, with minimal attention given to reinforcing columns exhibiting inherent defects. This study addresses this gap by introducing initial vertical and horizontal defects at three distinct locations (top, middle, and bottom) and employing Carbon-FRP for reinforcement. The research investigates the dimensional and positional impacts of these defects on the axial behavior of SHS columns. A total of 29 samples, comprising 17 with defects, 11 strengthened, and 1 defect-free control, underwent examination. The study employed ABAQUS modeling and conducted experimental testing. Results revealed that defects located at different positions significantly diminished the load-bearing capacity and initial performance of the steel columns. Axial loading induced local buckling and lateral rupture, particularly at the defect side, in short columns. Notably, horizontal (across the column's width) and vertical (along the column's height) defects in the middle led to the most substantial reduction in strength and load-bearing capacity. The axial compressive failure increased with the length-to-width ratio of the defect. Moreover, the application of four carbon fiber layers to strengthen the steel columns resulted in increased Energy Dissipation and a delayed onset of local buckling in the face of axial ruptures.

Limitations on the Width-to-Thickness Ratio of Rectangular Concrete-Filled Tubular (CFT) Columns (콘크리트 충전 각형강관 기둥의 폭두께비 제한에 관한 연구)

  • Choi, Young-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.451-458
    • /
    • 2012
  • The concrete-filled steel tube (CFT) that has an excellent performance can be more economically used when the steel tube has a large width-to-thickness ratio. However, the international provisions such as American Institute of Steel Construction (AISC) limit the use of a slender plate in CFT members, resulting in a less optimal use of CFT. This study verifies the post buckling strength of CFT columns through the experimental program for Hollow Steel Sections (HSS) and CFTs with a with-to-thickness ratio ranged 60 to 100. The study also proposes a relaxed limitations of with-to-thickness ratio compared to the one specified in the current standards.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Bandwidth Improvement of Circularly Polarized Microstrip Antenna for an UHF RFID Portable Reader (휴대용 UHF RFID 리더기용 원편파 마이크로스트립 안테나의 대역폭 개선)

  • Kim, Sang-Gi;Choi, Ik-Guen
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2008
  • In this paper, circular polarized microstrip antenna with a conducted hollow cylinder-typed via around the coaxial probe is proposed to enhance the bandwidth of an RFID portable reader microstrip antenna. An antenna of thickness of 6.4 mm and size of $84{\times}84\;mm$ is manufactured with FR4 substrate and its 10 dB return loss bandwidth is measured to be 92 MHz, which is about three times large than the same size's microstrip antenna without hollow cylindrical via. The measured antenna gain and the axial ratio at each are $0.01{\sim}1.825\;dB$ and $2.3{\sim}8.2\;dB$ within 10 dB return loss bandwidth, respectively.