• Title/Summary/Keyword: Hollow Fiber Membrane Module

Search Result 99, Processing Time 0.022 seconds

Study on the Pervaporation Seperation of Aqueous 1-Butanol Mixture Using Composite PEI/PDMS Membrane (1-Butanol / 물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일럿 분리특성)

  • Cheon, Bong su;Lee, Choong Sub;Ha, Sung Yong;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.352-357
    • /
    • 2015
  • To determine the pervaporation separation characteristics of 1-butanol/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The 1% 1-butanol of 1-butanol/water feed mixture was used. The flux of $133g/m^2hr$ and separation factor of 23.4 at $30^{\circ}C$ were obtained whereas the $505g/m^2hr$ and 5.1 were measured at $50^{\circ}C$. When compared with the performance of the hollow fiber PDMS membrane by Nagasep Co., the higher flux of $10{\sim}20g/m^2hr$ was obtained by the module of Airrane Co. In order to realized the durability of Airrane Co. module, the long-term test of 35 days has been conducted and as a result, the flux $510{\sim}520g/m^2hr$ and separation factor 20~25 were maintained with the initial values.

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Separation of Protein from Degumming Solution by Utrafiltration Membrane (한외여과막을 이용한 단백질 정련액으로부터 단백질 분리)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young;Lee, Ki-Hoon
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.375-380
    • /
    • 2007
  • To recover sericin protein from by-product in silk production process, a polyethersulfone hollow fiber ultra-filtration membrane module was used. The soap in the degummed solution was precipitated by calcium chloride. The influence of membrane module of submerged and external type on membrane fouling was investigated. The effect of soap and protein on the membrane fouling in the external type membrane module was also studied. The removal of soap resulted in decreasing the membrane fouling. It was shown that the protein and the membrane were affected by the soap.

Advanced Treatment for Reuse of Oil Refinery Process Wastewater using UF/RO Processes (UF/RO 공정을 이용한 정유공장 방류수의 재활용을 위한 고도처리)

  • 이광현
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.220-229
    • /
    • 2000
  • Deionized water and wastewater flux were discussed using module set 1-7 composed of ultrafiltration hollow fiber type modules and reverse osmosis spiral wound type modules. The separation characteristics of ultrafiltration and reverse osmosis membranes were discussed with the variation of applied pressure and temperature. Turbidity and SS were removed effectively from ultrafiltration mem¬brane, and removal efficiency of COD, T-N, and TDS using reverse osmosis membrane was very efficient. Permeate flux increased linearly with the increase of applied pressures and temperature. It was shown that ultrafiltration and reverse osmosis membranes were suitable Lo the advanced treatment and reuse of oil refinery process effluent.

  • PDF

The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines (기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향)

  • 권병철;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

Affinity Separation of Proteins by Hollow-Fiber Membrane Module Column (실관막 모듈 분리관에 의한 단백질의 친화성 분리)

  • 이광진;염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.77-79
    • /
    • 1996
  • 근래들어 생물기술이 급속히 발전함에 따라 생물반응을 통해 다양한 생물제품들의 생산이 이루어지고 있다. 생물반응에 의한 생물제품들의 생산량은 극단적으로는 기질 1g당 10$^{-8}$g 정도로서 극히 낮아 이를 상업제품이 요구하는 순도(95 %이상)로 까지 정제하기 위해서는 여러 단계를 거치는 복잡하고 지루한 분리.정제 과정이 필요하며, 이 분리.정제의 후류공정(downstream process)비용이 생물제품 생산비의 상당부분을 점유케 되어 생물공정의 경제성을 낮게 한다. 따라서 생물공정을 이용한 생물제품 생산이 산업적으로 경제성을 갖기 위해서는 생물제품을 보다 효율적.경제적으로 분리.정제할 수 있는 후류공정의 확립이 요구된다. 본 연구에서는 산업적 규모로 생산되는 생물제품들을 효율적으로 분리.정제하는데 응용 가능한 방법의 하나로서 관심의 대상이 되고 있는 책체 크로마트그래피 기법을 연구의 대상으로 하였다.

  • PDF

Removal/Recovery of VOCs Using a Rubbery Polymeric Membrane (Rubbery 고분가 막을 이용한 휘발성 유기화학물의 제거 및 회수)

  • Cha, Jun-Seok
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.173-181
    • /
    • 1996
  • Common volatile organic compounds(VOCs) such as toluene and methanol were removed successfully from N$_{2}$ using a novel silicone-coated hollow fiber membrane module. This novel membrane is a thin film composite(TFC) and was highly efficient in removing VOCs selectively from a N$_{2}$ stream. This membrane had some innate advantages over other silicone-based membrane in that the selective barrier was ultrathin(~1 $\mu$m) and the porosity of the polypropylene substrate was high which leads to a low permeation resistance. The substram was very strongly bonded to the coating layer by plasma polymerization and can withstand a very high pressure. A small hollow fiber module having a length of 25cm and 50 fibers could remove 96~99% of toluene as well as methanol vapors when the feed flow rate was up to 60cc/min. The percent removal of VOCs were even higher when the feed inlet concentration was higher. This process is especially suitable for treating streams having a low flow rate and high VOCs concentration. The permeances of VOCs through this membrane was in the range of $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$ for both toluene and methanol, and nitrogen permeance was between $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$. High separation factor between 10~55 for toluene/N$_{2}$ and 15~125 for methanol/N$_{2}$ were obtained depending on the feed flow rate ranges and feed VOCs concentration levels.

  • PDF

A Study on Membrane Fouling by Flux and Linear Velocity in Coagulation/Ultrafiltration Membrane System (응집·한외여과 조합공정에서 플럭스와 선속도가 막오염에 미치는 영향에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • A coagulation/ultrafiltration membrane hybrid system was operated to treat river water with capacity of $0.06m^3/d$. The impact on membrane fouling by flux and linear velocity was investigated. It is known that pressure increase is proportional to flux increase. However, pressure increase was much faster than theoretical value in the pilot plant test. So it was suggested that flux was on important factor in ultrafiltration of continuous operation. Membrane fouling was decreased when linear velocity was increased. This phenomenon was found more obviously without coagulation. With the combination of coagulation and sedimentation, membrane fouling was not reduced conspicuously. Big particles formed during coagulation and sedimentation were destroyed by feed and circulation pumping, which resulted in little effect on membrane fouling reduction. The degree of destruction was similar at various linear velocities. In this study, the hollow fiber membrane was used and the system was operated in pressure type module. In case of the system used in this study, membrane fouling has been affected lightly by linear velocity variation when coagulation pretreatment was applied.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.