• Title/Summary/Keyword: Hollow Fiber

Search Result 631, Processing Time 0.031 seconds

Thends in Membrane Contactors (분리막 접촉기의 기술 동향)

  • Lee Kew-Ho;Kim Min-Joung;Sea Bongkuk;Park You-In;Lee Ki-Sub
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.187-197
    • /
    • 2005
  • A membrane contactor is a device that achieves liquid/liquid or gas/liquid mass transfer without dispersion of one phase within another. This is accomplished by passing the fluids on opposite sides of a microporous membrane. This approach offers a number of important advantages over conventional dispersed phase contactors, including absence of emulsions, no flooding at high flow rates, no unloading at low flow rates, and high interfacial area. This article provides a general review of membrane contactors, including operating principles and applications.

Capture of Metal Ions by Cross-linked Sulfonic Acid Type Ion Exchange Membranes (가교제를 도입시킨 술폰산형 이온교환막의 금속이온 포집)

  • Kim, Min;Kim, Ye-Jin;Park, Sang-Jin
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • This paper is designed with the purpose of improving the efficiency of the sulfonic acid ion exchange membranes by radiation induced graft polymerization. It has been shown that the porous hollow fiber membranes could cause permeability blocking between pores and ion exchanged graft chains. Addition of crosslinker such as N-ethylene glycol dimethacrylate will permit to increase the permeation flux. In this research, the ethylene glycol dimethacrylate (EDMA) and diethylene glycol dimethacrylate (DDMA) with different length are used as crosslinkers. The ion exchanged cross-linked membrane (EDMA, DDMA) containing sulfonic acid group by radiation induced grafted polymerization are sn died for adsorb metal ions (Pb). It has been shown that adsorbed metal ions ($Pb^{2+}$) for the EDMA and DDMA membranes with the density of sulfonic acid groups, 1.40 mmol/g and 2.14 mmol/g, respectively are 13.82 mg/g, 17.37 mg/g, accordingly.

Pilot Test with Pervaporation Seperation of Aqueous IPA Using a Composite PEI/PDMS Membrane Module (IPA/물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일롯 분리특성)

  • Cheon, Bong Su;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • To determine the pervaporation separation characteristics of IPA/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The flux of $0.52kg/m^2h$ and IPA concentration of 68.5% at $25^{\circ}C$ were obtained whereas the $1.368kg/m^2h$ and 61.2% were measured at $55^{\circ}C$. In order to realized the durability of the module, the long-term test (at $50^{\circ}C$) of 100 days has been conducted and as a result, the flux $1.03{\sim}1.15kg/m^2h$ and IPA concentration 61.8~62.5% were maintained with the initial values.

Evaluation of CIA(Conventional Intermittent Aeration) and MIA(Modified Intermittent Aeration) in Membrane Submerged Advanced Wastewater Treatment Process (멤브레인을 침지한 하수고도처리공법에서 기존간헐포기와 개량간헐포기의 효율성 비교평가)

  • Seo, In-Seok;Kim, Yeon-Kwon;Kim, Ji-Yeon;Kim, Hong-Suck;Kim, Byung-Goon;Choi, Chang-Gyu;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2006
  • In this study, the treatment of domestic wastewater in a field-scale membrane submerged intermittently aerated activated sludge process($210m^3/day$) was investigated under difference aeration methods. Operating temperature was 5.4 to 25.0 and membrane used in this study is a polyethylene hollow fiber membrane(pore size $0.4{\mu}m$). The range of operating flux was $9.7{\sim}24.4l/m^2-h$ and membrane permeates periodically operated for 7min followed idle for 3 min. The results showed that MIA(modified intermittent aeration) was more efficient in nitrogen and phosphorus removal. The removal efficiencies of T-N and T-P were 73.0% and 69.6% for CIA(conventional intermittent aeration) and 57.5%, 58.6% for MIA (modified intermittent aeration). With application of modified intermittent aeration, DO reached nearly Omg/l within 10 minutes after air off. Organics of influent could be entirely consumed to the denitrification and the P-release without the influence by remained DO in intermittent aeration reactor. Therefore, newly developed KSMBR(Kowaco-KMS-Ssangyoung Membrane Bio-Reactor) process with modified intermittent aeration can be one of the useful process for stable nitrogen and phosphorus removal.

PPTA/PVDF blend membrane integrated process for treatment of spunlace nonwoven wastewater

  • Li, Hongbin;Shi, Wenying;Qin, Longwei;Zhu, Hongying;Du, Qiyun;Su, Yuheng;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • Hydrophilic and high modulus PPTA molecules were incorporated into PVDF matrix via the in situ polymerization of PPD and TPC in PVDF solution. PPTA/PVDF/NWF blend membrane was prepared through the immersion precipitation phase inversion method and nonwoven coating technique. The membrane integrated technology including PPTA/PVDF/NWF blend membrane and reverse osmosis (RO) membrane was employed to treat the polyester/viscose spunlace nonwoven process wastewater. During the consecutive running of six months, the effects of membrane integrated technology on the COD, ammonia nitrogen, suspended substance and pH value of water were studied. The results showed that the removal rate of COD, ammonia nitrogen and suspended substance filtered by PPTA/PVDF blend membrane was kept above 90%. The pH value of the permeate water was about 7.1 and the relative water flux of blend membrane remained above 90%. After the deep treatment of RO membrane, the permeate water quality can meet the water circulation requirement of spunlace process.

Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane

  • Li, Dongmei;Liang, Jinling;Huang, Mingzhu;Huang, Jun;Feng, Li;Li, Shaoxiu;Zhan, Yongshi
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • To investigate surface properties and interception performances of the new modified PVDF membrane coated with Graphene Oxide (GO) and nano-$TiO_2$ (for short the modified membrane) via the interface polymerization method combined with the pumping suction filtration way, filtration experiments of the modified membrane on Humic Acid (HA) were conducted. Results showed that the contact angle (characterizing the hydrophilicity) of the modified membrane decreased from $80.6{\pm}1.8^{\circ}$ to $38.6{\pm}1.2^{\circ}$. The F element of PVDF membrane surface decreased from 60.91% to 17.79% after covered with GO and $TiO_2$. O/C element mass ratio has a fivefold increase, the percentage of O element on the modified membrane surface increased from 3.83 wt% to 20.87%. The modified membrane surface was packed with hydrophilic polar groups (like -COOH, -OH, C-O, C=O, N-H) and a functional hydrophilic GO-polyamide-$TiO_2$ composite configuration. This configuration provided a rigid network structure for the firm attachment of GO and $TiO_2$ on the surface of the membrane and for a higher flux as well. The total flux attenuation rate of the modified membrane decreased to 35.6% while 51.2% for the original one. The irreversible attenuation rate has dropped 71%. The static interception amount of HA on the modified membrane was $158.6mg/m^2$, a half of that of the original one ($295.0mg/m^2$). The flux recovery rate was increased by 50%. The interception rate of the modified membrane on HA increased by 12% approximately and its filtration cycle was 2-3 times of that of the original membrane.

Assessing the Dehydration Pervaporation Performance for Purification of Industrially Significant 1, 2 Hexanediol/Water Mixtures Using Crosslinked PVA Membrane (가교된 PVA 분리막을 이용한 1, 2 hexanediol/water 혼합물의 투과증발 탈수 특성 연구)

  • Shivshankar Chaudhari;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.369-376
    • /
    • 2023
  • In this study, the alternative to the energy-intensive conventional vacuum distillation process, an eco-friendly and energy-efficient pervaporation separation was employed in 1,2 hexane diol/water (HDO/water) mixture. The crosslinked PVA-glutaraldehyde was coated inside the alumina hollow fiber membrane (Al-HF). In the HDO/IPA pervaporation separation, optimization of the membrane concerning PVA/GA ratio, curing temperature, and pervaporation operating condition were performed. In the long-term stability test, the sustainable pervaporation separation performance giving flux in the range of 1.90~2.16 kg/m2h, and water content in permeate was higher than 99.5% (separation factor = 68) was obtained from the PVA/GA (molar ratio = 0.08, curing temperature = 80℃) coated Al-HF membrane from HDO/water (25/75, w/w, %) mixture at 40℃. Therefore, this work provides potential and inspiration for PVA-based membranes to mitigate excessive energy requirements in HDO/water separation by pervaporation.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

Behavior of NOM Fouling in Submerged Photocatalytic Membrane Reactor Combined with $TiO_2$ Nanoparticles ($TiO_2$ 나노입자/UV 결합 침지형 중공사막 시스템에서 자연유기물의 파울링거동)

  • Park, Seung-Soo;Seo, Hyung-Jun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2011
  • In this study, combined effect of airflow rate, $TiO_2$ concentration, solution pH and $Ca^{+2}$ addition on HA (humic acid) fouling in submerged, photocatalytic hollow-fiber microfiltraiton was investigated systematically. Results showed that UV irradiation alone without $TiO_2$ nanoparticles could reduce HA fouling by 40% higher than the fouling obtained without UV irradiation. Compared to the HA fouling without UV irradiation and $TiO_2$ nanoparticles, the HA fouling reduction was about 25% higher only after the addition of $TiO_2$ nanoparticles. Both adsorptive and hydrophilic properties of $TiO_2$ nanoparticles for the HA can be involved in mitigating membrane fouling. It was also found that the aeration itself had lowest effect on fouling mitigation while the HA fouling was affected significantly by solution pH. Transient behavior of zeta potential at different solution pHs suggested that electrostatic interactions between HA and $TiO_2$ nanoparticles should improve photocatalytic efficiency on HA fouling. $TiO_2$ concentration was observed to be more important factor than airflow rate to reduce HA fouling, implying that surface reactivity on $TiO_2$ naoparticles should be important fouling mitigation mechanisms in submerged, photocatalyic microfiltraiton. This was further supported by investigating the effect of $Ca^{+2}$ addition on fouling mitigation. At higher pH (= 10), addition of $Ca^{+2}$ can play an important role in bridging between HA and $TiO_2$ nanoparticles and increasing surface reactivity on nanoparticles, thereby reducing membrane fouling.

Permeation and Permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through Polymeric Hollow Fiber Membranes (고분자 분리막 재질 변화에 따른 $O_2$, $CF_4$, $SF_6$ 투과도 및 투과선택도 특성 변화에 대한 연구)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • In this study, we tried to observe the permeation on the single $O_2$, $CF_4$ and $SF_6$ gas using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. We also observed the permselectivity on the $O_2/SF_6$ and $CF_4/SF_6$. According to the results of single gases permeation for different pressures, PSF membrane has the highest $O_2$ permeation of 37.5 GPU and PC membrane has the highest $SF_6$ permeation of 2.7 GPU and the highest $CF_4$ permeation of 2.5 GPU at 1.1 MPa. According to the results of single gases permeation for different temperatures, PSF membrane has the highest permeation of $O_2$ at $45^{\circ}C$ and PC membrane has the highest permeation of $SF_6$ and $CF_4$ at $25^{\circ}C$. From the result of $O_2/SF_6$ and $CF_4/SF_6$ permselectivity for different pressures and temperature, the highest permeation and the lowest permselectivity were observed in the PSF and PC membrane. On the contrary, the lowest permeation and the highest permselectivity was observed in the PI membrane.