• Title/Summary/Keyword: Hole transporting layer

Search Result 100, Processing Time 0.035 seconds

Luminance Characteristics of Organic Electroluminescent Devices Based on Znq12 by Heating (열처리된 Znq2에 기초한 유기 EL소자의 발광특성)

  • Jo, Seong-Ryeol;Jeong, Eun-Sil;Park, Su-Gil;Jeong, Pyeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.564-568
    • /
    • 1999
  • The 8-hydroxyquinoline Zinc(Znq2) were prepared successfully from zinc chloride and zinc acetate as two kinds of starting material. The organic electroluminescent devices(ELDs) were fabricated by the structure of ITO/TPD/Znq2/Al with N-N'-diphenyl-N-N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) which acts hole trasporting layer and bis(8-oxyquinolino) zinc(II)(Znq2) which acts as emission and electron transporting layer. EL efficiency of Znq2 prepared by heating was investigated. The 570nm of main emission peak which is yellowich green was investigated by photo luminesence(PL) and this results shows that electro luminescence(EL) is from Znq2. The V-J curve shows that carrier injection were investigated from 4V. Maximum luminance and luminance efficiency were 1600cd/$\m^2$, 0.9lm/W. From this results, the Znq2 can be one of the useful organic EL material.

  • PDF

Use of Self Assembled Monolayer in the Cathode/Organic Interface of Organic Light Emitting Devices for Enhancement of Electron Injection

  • Manna, U.;Kim, H.M.;Gowtham, M.;Yi, J.;Sohn, Sun-young;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1343-1346
    • /
    • 2005
  • Self assembled monolayers (SAM) are generally used at the anode/organic interface to enhance the carrier injection in organic light emitting devices, which improves the electroluminescence performance of organic devices. This paper reports the use of SAM of 1-decanethiol (H-S(CH2)9CH3) at the cathode/organic interface to enhance the electron injection process for organic light emitting devices. Aluminum (Al), tris-(8-hydroxyquionoline) aluminum (Alq3), N,N'-diphenyl-N,N'-bis(3 -methylphenyl)-1,1'- diphenyl-4,4'-diamine (TPD) and indium-tin-oxide (ITO) were used as bottom cathode, an emitting layer (EML), a hole-transporting layer (HTL) and a top anode, respectively. The results of the capacitancevoltage (C-V), current density -voltage (J-V) and brightness-voltage (B-V), luminance and quantum efficiency measurements show a considerable improvement of the device performance. The dipole moment associated with the SAM layer decreases the electron schottky barrier between the Al and the organic interface, which enhances the electron injection into the organic layer from Al cathode and a considerable improvement of the device performance is observed. The turn-on voltage of the fabricated device with SAM layer was reduced by 6V, the brightness of the device was increased by 5 times and the external quantum efficiency is increased by 0.051%.

  • PDF

Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative (열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성)

  • Choi, Jiyoung;Lee, Bong;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.299-303
    • /
    • 2008
  • A thermally cross-linkable polymer, poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV), was synthesized by the Heck coupling reaction. In order for the polymer to be cross-linkable, 20 mol% excess divinylbenzene was added. The chemical structure of Cross-PPV and thermally crosslinked Cross-PPV were confirmed by FT-IR spectroscopy. From the FT-IR, UV-Vis, and PL spectral data, thermally crosslinked Cross-PPV was insoluble in common organic solvents. The HOMO and LUMO energy level of thermally cross-linked Cross-PPV were estimated -5.11 and -2.56 eV, respectively, which were determined by the cyclic voltammetry and UV-Vis spectroscopy. From the energy level data, one can easily notice that thermally crosslinked Cross-PPV can be used for hole injection layer effectively. Bilayer structured device (ITO/crosslinked Cross-PPV/PM-PPV/Al) was fabricated using poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylenevinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene (PM-PPV) as the emitting layer, which have HOMO and LUMO energy levels of -5.44 eV and -3.48 eV, respectively. The bilayered device had much enhanced the maximum efficiency (0.024 cd/A) and luminescence ($45cd/m^2$) than those of a single layer device (ITO/PM-PPV/Al, 0.003 cd/A, $3cd/m^2$). The enhanced performance originated from that fact that cross-linked Cross-PPV facilitatse the hole injection to the emissive layer and the injected hole and electron from ITO and Al are recombined in emitting layer (PM-PPV) effectively.

A Studies on the Electrical and Optical Characterization of Organic Electroluminescent Devices using $Eu(TTA)_3(phen)$ (Europium complex를 이용한 유기 전기 발광 소자의 전기적 및 광학적 특성에 관한 연구)

  • Lee, Myung-Ho;Pyo, Sang-Woo;Lee, Han-Sung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1373-1376
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/TPD/$Eu(TTA)_3(phen)/Alq_3/Al$ structures were fabricated by evaporation method, where aromatic diamine(TPD) were used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and tris(8-hydroxyquinoline)Aluminum ($Alq_3$) as an electron transporting layer. Electroluminescent(EL) and I-V characteristics of $Eu(TTA)_3(phen)$ with a variety thickness was investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of $Eu(TTA)_3(phen)$. I-V characteristics of this structure show that turn-on voltage was 9V and current density of $0.01A/cm^2$ at a dc drive voltage of 9V. Details on the explanation of electrical transport phenomena of these structures with I-V characteristics using the trapped-charge-limited current model will be discussed.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Green Phosphorescent OLED Without a Hole/Exciton Blocking Layer Using Intermixed Double Host and Selective Doping

  • Kim, Won-Ki;Kim, Hyung-Seok;Shin, Hyun-Kwan;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.240-244
    • /
    • 2009
  • Simple and high efficiency green phosphorescent devices using an intermixed double host of 4, 4', 4"-tris(N-carbazolyl) triphenylamine [TCTA], 1, 3, 5-tris (N-phenylbenzimiazole-2-yl) benzene [TPBI], phosphorescent dye of tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and selective doping in the TPBI region were fabricated, and their electro luminescent characteristics were evaluated. In the device fabrication, layers of $70{\AA}$-TCTA/$90{\AA}$-$TCTA_[0.5}TPBI_{0.5}$/$90{\AA}$-TPBI doped with $Ir(ppy)_3$ of 8% and an undoped layer of $50{\AA}$-TPBI were successively deposited to form an emission region, and SFC137 [proprietary electron transporting material] with three different thicknesses of $300{\AA}$, $500{\AA}$, and $700{\AA}$ were used as an electron transport layer. The device with $500{\AA}$-SFC137 showed the luminance of $48,300\;cd/m^2$ at an applied voltage of 10 V, and a maximum current efficiency of 57 cd/A under a luminance of $230\;cd/m^2$. The peak wavelength in the electroluminescent spectral and color coordinates on the Commission Internationale de I'Eclairage [CIE] chart were 512 nm and (0.31, 0.62), respectively.

Effects of Doping in Organic Electroluminescent Devices Doped with a Fluorescent Dye

  • Kang, Gi-Wook;Ahn, Young-Joo;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2001
  • The effect of doping on the energy transfer and charge carrier trapping processes has been studied in organic light-emitting diodes (OLEDs) doped with a fluorescent laser dye. The devices consisted of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD) as a hole transporting layer, tris(8-hydroxyquinoline) aluminum ($Alq_3$) as the host, and a fluorescent dye, 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2) as the dopant. Temperature dependence of the current-voltage-luminescence (I-V-L) characteristics, the electroluminescence (EL) and photoluminescence (PL) spectra are studied in the temperature ranging between 15 K and 300 K. The emission from DCM2 was seen to be much stronger compared with the emission from $Alq_3$, indicative of efficient energy transfer from $Alq_3$ to DCM2. In addition, the EL emission from DCM2 increasd with increasing temperature while the emission from the host $Alq_3$ decreased. The result indicates that direct charge carrier trapping becomes efficient with increasing temperature. The EL emission from DCM2 shows a slightly sublinear dependence on the current density, implying the enhanced quenching of excitons at high current densities due to the exciton-exciton annihilation.

  • PDF

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine

  • Jo, Mi-Young;Lim, Youn-Hee;Ahn, Byung-Hyun;Lee, Gun-Dae;Kim, Joo-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.492-498
    • /
    • 2012
  • A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).

Improvement of Efficiency in $\pi$-Conjugated Polymer Based on Phenothiazine by Introduction of Oxadiazole Pendant as a Side Chain

  • Choi, Ji-Young;Lee, Bong;Kim, Joo-Hyun;Lee, Kye-Hwan
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.319-324
    • /
    • 2009
  • A new $\pi$-conjugated polymer, poly[(2-methoxy-(5-(2-(4-oxyphenyl)-5-phenyl-1,3,4-oxadiazole)-hexyloxy))-1,4-pheny1ene-1,2-etheny1ene-alt-(10-hexyl-3,7-phenothiazine )-1,2-ethenylene] (PTOXDPPV), was synthesized by the Heck coupling reaction. The electron transporting unit, conjugated 1,3,4-oxadiazo1e (OXD), is attached on the main chain via linear 1,6-hexamethylenedioxy chain. The band gap and photoluminescence (PL) maximum of PTOXDPPV are 2.35 eV and 565 nm, respectively. These values are very close to those of po1y[(2,5-didecyloxy-1,4-phenylene-1,2-etheny1ene )-alt-(l0-hexyl-3,7-phenothiazine)-1,2-ethenylene] (PTPPV), which does not have OXD pendant. The estimated HOMO energy level of PTOXDPPV was -4.98 eV, which is very close to that of PTPPV (-4.91 eV). The maximum wavelength of EL device based on PTOXDPPV and PTPPV appeared at 587 and 577 nm, respectively. In the PL and EL spectrum, the emission from OXD pendant was not observed. This indicates that the energy transfer from OXD pendants to main chain is occurred completely. The EL device based on PTOXD-PPV (ITO/PEDOT/PTOXDPPV/AI) has an efficiency of 0.033 cd/A, which is significantly higher than the device based on PTPPV (ITO/PEDOT/PTPPV/AI) ($4.28{\times}10^{-3}\;cd/A$). From the results, we confirm that the OXD pendants in PTOXDPPV facilitate hole-electron recombination processes in the emissive layer effectively.