• 제목/요약/키워드: Hole geometry

검색결과 157건 처리시간 0.022초

디젤엔진에서 노즐 홀 형상효과의 실험적 연구 (Experimental Study of the Effects of Nozzle Hole Geometry for di Diesel Engine)

  • 구건우;이영진;김인수;이충원
    • 한국분무공학회지
    • /
    • 제12권3호
    • /
    • pp.154-159
    • /
    • 2007
  • Spray tip penetration and spray angle for one main injection were measured at the atmospheric condition with the fuel injection pressure of 270 bar and 540 bar. It investigates an effect of different nozzle hole geometry of conventional cylindrical one and those of elliptical ones. Injection period represented by injector pulse drive was fixed at 1ms. From the result of this study, it is shown that spray tip penetration becomes shorter and spray angle becomes wider with the elliptical nozzle hole geometry due to fast break-up of a fuel liquid column.

  • PDF

선박디젤기관용 분사밸브의 형상변화가 분사특성에 미치는 영향에 관한 계산적 고찰 (The Effect of Valve Geometry Variation on Injection Characteristics of Injection Valve for Marine Diesel Engines)

  • 박권하;김성윤;최창우
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.24-34
    • /
    • 2005
  • Injection technology is one of the important technologies in a diesel engine. Many studies have done on the injection system. In this study, the fuel chamber geometry, the orifice ratio and the needle lift of the injection valve for a marine diesel engine are varied, and simulated. The result shows that the nozzle hole size has influence on the rail pressure and injection duration sensitively. The decrease of the static pressure at the nozzle hole entrance and the increase of the dynamic pressure on the outlet surface are occurred with the increase of the nozzle hole diameter. The highest dynamic pressure of the outlet was occurred at the needle lift of 0.4mm and the nozzle hole diameter of 0.328mm in this test nozzle.

  • PDF

노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구 (Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

ADJOINT METHOD FOR CONTROLLED CAVITATION INVERSE NOZZLE DESIGN

  • Petropoulou, S.;Gavaises, M.;Theodorakakos, A.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.283-288
    • /
    • 2006
  • A mathematical methodology is proposed for designing nozzle hole shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an adjoint algorithm. The adjoint formulation for the N-S equations is presented while variation of the turbulence viscosity is not taken into account during the geometry modifications. The sensitivities are calculated in a mode independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localized region at the hole inlet producing cavitation, is parameterised using its radius of curvature, while a cost function is formulated to eliminate the negative pressures present at this location. Sensitivity derivatives are used to assess the dependence of the localized region on the minimum pressure, and to drive the geometry to the targeted shape. The results show that the computer model can provide nozzle hole entry shapes that produce predefined flow characteristics, and thus can be used as an inverse design tool for nozzle hole cavitation control.

태양열 공기가열기의 흡열판 홀 배치와 형상에 따른 열적 성능에 관한 수치해석적 연구 (A Numerical Study on the Thermal Performance of a Solar Air Heater Depending on the Hole Configuration and Geometry in the Absorber Plate)

  • 신재혁;부준홍
    • 한국태양에너지학회 논문집
    • /
    • 제35권1호
    • /
    • pp.69-80
    • /
    • 2015
  • A series of numerical analyses was conducted to predict the thermal performance of a solar air heater depending on the hole configuration and geometry in the absorber plate. The planar dimensions of the prototype were 1 m (W) by 1.6 m (H), and the maximum air flow considered was $187m^3/h$. It was considered that protruding holes with a triangular opening in the absorber plate would invoke turbulence in the air flow to enhance the convection heat transfer. Six different hole configurations were investigated and compared with each other, while the hole opening height was considered as a design variable. Three-dimensional transient analyses were performed with a commercial software package on the airflow and heat transfer in the model. The numerical results were analyzed and compared from the view point of the outlet air temperature and its time response to derive the optimal hole pattern and hole opening height.

터빈 블레이드 냉각시스템에 관한 수치해석적 연구 (NUMERICAL STUDY OF TURBINE BLADE COOLING TECHNIQUES)

  • 김광용;이기돈;문미애;허만웅;김현민;김진혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.530-533
    • /
    • 2010
  • This paper presents numerical analysis and design optimization of various turbine blade cooling techniques with three-dimensional Reynolds-averaged Navier-Stokes(RANS) analysis. The fluid flow and heat transfer have been performed using ANSYS-CFX 11.0. A fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness with the radial basis neural network method. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. The impingement jet cooling has been performed to investigate heat transfer characteristic with geometry variables. Distance between jet nozzle exit and impingement plate, inclination of nozzle and aspect ratio of nozzle hole are considered as geometry variables. The area averaged Nusselt number is evaluated each geometry variables. A rotating rectangular channel with staggered array pin-fins has been investigated to increase heat transfer performance ad to decrease friction loss using KRG modeling. Two non-dimensional variables, the ratio of the eight diameter of the pin-fins and ratio of the spacing between the pin-fins to diameter of the pin-fins selected as design variables. A rotating rectangular channel with staggered dimples on opposite walls are formulated numerically to enhance heat transfer performance. The ratio of the dimple depth and dimple diameter are selected as geometry variables.

  • PDF

분사노즐 출구 각도 변화가 분사특성에 미치는 영향에 관한 계산적 고찰 (Computational Study on The Effect of Injection Nozzle Hole Exit Angle Variation on Injection Characteristics)

  • 김주연;박권하;이승호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.997-1002
    • /
    • 2012
  • 박용기관에서의 배기규제는 단계별로 강화되고 있으며 연소실 내외의 종합대책이 요구되고 있다. 기관 내부의 연소 특성은 배기배출 특성과 밀접한 관계가 있으며 분사밸브의 노즐과 노즐 홀 특성은 연소에 중요한 영향을 미친다. 분무 특성을 향상시키기 위한 노즐에 관한 연구는 입구형상, 직경 등에 집중되고 있으며, 노즐 출구의 형상에 대해서는 연구가 부족하다. 본 연구에서는 노즐 출구의 형상을 0도에서 90도까지 변화시키면서 계산을 수행하였다. 분사 압력, 질량유량, 유속, 유동특성 등을 종합하였을 때 노즐 출구 각도를 30도와 60도 사이로 하였을 때가 가장 효과적일 것이라 사료된다.

일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구 (Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

Electric Charge and Magnetic Flux on Astrophysical Black Hole

  • LEE HYUN KYU
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.301-303
    • /
    • 2001
  • We suggest a possible scenario of an astrophysical black hole with non-vanishing electric charge and magnetic flux. The equilibrium charge on a rotating black hole in a force-free magnetosphere is calculated to be Q $\~$ BJ with a horizon flux of ${\~}BM^2$, which is not large enough to disturb the background Kerr geometry. Being similar to the electric charge of a magnetar, in sign and order of magnitude, both electric charge and magnetic flux are supposed to be continuous onto a black hole.

  • PDF

노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구 (Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions)

  • 박승환;조상호;김승곤;김광염;김동규
    • 터널과지하공간
    • /
    • 제20권1호
    • /
    • pp.65-72
    • /
    • 2010
  • 암반발파에서 평활한 파단면을 확보하고 굴착손상영역을 제어하기 위하여 노치장약공을 이용한 균열제어공법이 제안되었다. 본 연구에서는 노치형상과 장약조건이 균열발생 및 성장에 미치는 영향을 살펴보기 위하여 날개형 노치장약공을 갖는 발파모델을 구축하고 동적 파괴과정 해석법을 이용한 암반 파괴과정 해석을 수행하였다. 그 결과, 노치 길이가 증가함에 균열의 성장 길이가 증가하며 파단면의 거칠기가 감소하고 장약공 상하부에 손상균열의 발생이 억제되는 경향을 보였다. 해석결과로부터 노치 길이 및 개구 폭에 따른 응력집중계수의 변화 및 균열발생 양상을 비교 분석하여 균열제어에 미치는 영향인자에 대하여 고찰하였다.