• Title/Summary/Keyword: Hole barrier

Search Result 121, Processing Time 0.041 seconds

Sputtering법으로 제조한 OLED용 Barrier Layer의 특성평가

  • Jeong, Eun-Uk;Kim, Hoe-Bong;Lee, Jong-U;Jo, Yeong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.163-163
    • /
    • 2012
  • 차세대 모바일용 전자디스플레이로 각광받고 있는 FOLED (flexible organic light emitting display)의 연구에서 display의 신뢰성과 수명은 매우 중요한 연구 테마이다. OLED의 수명단축에 영향을 미치는 요소는 수분에 의한 열화가 가장 치명적이다. Barrier layer를 통한 수분의 주요 침투경로는 pin-hole과 void 등과 같은 defect에 의한 것으로 보인다. 수분의 침투 경로를 제어하는 OLED용 barrier layer의 요구조건은 WVTR (water vapor transmission rate)이 $10^{-6}g/m^2{\cdot}day$ 이하로 낮아야 한다. Barrier layer가 가져야 할 핵심적인 조건은 유연성을 가지면서 동시에 WVTR 값이 매우 낮아야 하는데, 아직까지 이를 만족하는 barrier layer의 개발은 아직 덜된 실정이다. 본 연구에서는 PET (polyethylene terephthalate) 기판에 sputtering법으로 barrier layer를 제조하였다. 증착에 이용한 타겟은 두가지 종류인 Al과 $Al_2O_3$를 사용하였으며, 다층박막으로 제조하였다. 제조된 barrier layer의 수분침투 특성은 WVTR의 측정으로, 유연성의 평가는 in-situ fatigue test를 수행하여 측정하였다. 종합적인 특성 평가를 위하여 SEM과 AFM (atomic force microscope) 관찰도 하였다.

  • PDF

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • Park, Won-Hyeok;Kim, Gang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.

Sound Absorbing Characteristics According to Interior Configuration of Noise Barrier (흡음형 방음벽의 내부 구성에 따른 흡음특성)

  • 박진규;김상헌;김관주;박희준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.387-392
    • /
    • 2003
  • This study is put a focus on the identification of sound characteristics according to the interior configuration of sound absorption material and air gap. Noise barrier is general consists of front perforated panel, air layer, sound absorption material, air gap and back plate. Noise barrier is required to the NRC value of 0.7. The absorbing performance of the noise barrier relies on the opening ratio of the perforated panel and the efficiency of the absorbing material. This study has observed the effect of opening ratio and hole size, the increase of sound absorbing performance by the configurations of sound absorption material and air gap. New designed noise barrier is achieved the acoustical performance of 0.87 the measurement in a reveration room.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Electromagnetic Performance improvement and Rib thickness Reduction by making a hole on Interior Permanent Magnet Synchronous Motor (IPMSM의 Hole에 의한 Rib의 두께 감소와 전자기적 성능 향상)

  • Lee, Tae-Geun;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.867_868
    • /
    • 2009
  • Interior permanent magnet synchronous motor [IPMSM] which has high power density is applied to motor for Hybrid electric vehicle[HEV], Electric vehicle[EV], Fuel cell electric vehicle[FCEV] and electric home appliances. In order to improve efficiency performance of IPMSM, this paper presented a study by making a hole around air barrier. Because concentrated rib stress is distributed by suitable hole, the hole can reduce rib thickness of IPM rotor. And it can help decrease PM[Permanent Magnet] leakage flux. Saliency ratio($L_q/L_d$) is also increased by magnetic circuit change. For this study, structure analysis of rotor is performed by Ansys program.

  • PDF

A Study on Performance Improvement of Sound Absorbing Noise Barrier (흡음형 방음벽의 성능향상에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.849-854
    • /
    • 2001
  • A study on performance of the sound absorbing noise barrier is presented. Noise barrier of sound absorbing type is composed of the front panel, sound absorbing material, and back panel. For allowing sound path, front panel is usually perforated. The performance of the noise barrier is governed by the opening ratio of the perforated panel, sound absorption coefficient of the sound absorbing material. In this study, the effects of the opening ratio, diameter of the hole, thickness of the sound absorbing material are investigated. It is found that the thickness of the sound absorbing material must be at least 50 mm to ensure the required minimum NRC value 0.70, and the opening ratio is greater than 0.2. It is shown that the thickness of the back panel is crucial in providing required STL (Sound Transmission Loss) value. The performance of the developed noise barrier is measured, where its sound absorbing coefficient and sound transmission loss satisfy the criteria.

  • PDF

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF

Residual Stresses Analysis of Ceramic Coating Materials (세라믹코팅재의 잔류응력 해석)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.8-11
    • /
    • 2008
  • In the present work, the measurement method of residual stresses in thermal barrier coatings(TBCs) which are received the thermal shock is performed numerically. For this, the internal residual stresses are predicted by commercial FEM software ABAQUS because the hole drilling strain gage method measures residual stresses only near the surface of a material. As the results of this study, the residual stresses are linearly increased when the surface temperatures are over $1,200^{\circ}C$. It is also found that the values of residual stress are increased as the coating thickness is thin.

All Carrier Ohmic-Contacts을 이용한 유기 발광 다이오드의 성능 향상 연구

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.168-168
    • /
    • 2012
  • 본 연구에서는 Molybdenum oxide (MoOx)-doped 4,4',4"-tris[2-naphthyl(amino)] triphenylamine(2-TNATA)의 P-doping에 의한 hole ohmic contact과 fullerene (C60)/lithium (LiF)의 electron ohmic contact에 의한 All Ohmic contact를 이용한 유기 발광 다이오드 (OLEDs)의 광저항 특성의 향상을 설명한다. 이 소자의 성능은 MoOx-doped 2-TNATA의 두께와 도핑농도에 큰 영향을 받는다. glass/ITO/MoOx-doped 2-TNATA (100 nm)/Al 구조의 소자에서 MoOx-doped 2-TNATA 도핑 농도가 25%에서 75%로 증가할수록 hole only device의 hole ohmic 특성이 향상됐다. 그 이유는 p-type doping effect 때문이다. 또한 photoemission spectra 분석결과, p-type doping effect는 hole-injecting barrier 높이는 낮추고, hole conductivity는 향상되었다. 이것은 2-TNATA에 도핑된 MoOx의 전하전송 콤플렉스의 형성으로 hole carrier의 수가 증가하여 발생되었다. MoOx-doped 2-TNATA의 hole ohmic contact과 fullerene (C60)/lithium fluoride (LiF)의 electron ohmic contact 으로 구성된 glass/ITO/MoOx-doped 2-TNATA (75%, 60 nm)/NPB (10 nm)/Alq3 (35 nm)/C60 (5 nm)/LiF (1 nm)/Al (150 nm)의 소자구조는 6,4V에서 127,600 cd/m2 최대 휘도와 약 1,000 cd/m2에서 4.7 lm/W의 높은 전력 효율을 보여준다.

  • PDF