• Title/Summary/Keyword: Hole Interaction

Search Result 172, Processing Time 0.026 seconds

Optical Probing of Electronic Interaction between Graphene and Hexagonal Boron Nitride (hBN)

  • Ahn, Gwanghyun;Kim, Hye Ri;Ko, Taeg Yeoung;Choi, Kyoungjun;Watanabe, Kenji;Taniguchi, Takashi;Hong, Byung Hee;Ryu, Sunmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.213-213
    • /
    • 2013
  • Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturbtheir various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity ($v_F$) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on $SiO_2$ substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.

  • PDF

Implementation of Underwater Entertainment Robots Based on Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에 기반한 엔터테인먼트용 수중 로봇의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Song, Min-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.255-262
    • /
    • 2009
  • We present an autonomous entertainment dolphin robot system based on ubiquitous sensor networks(USN). Generally, It is impossible to apply to USN and GPS in underwater bio-mimetic robots. But An Entertainment dolphin robot which presented in this paper operates on the water not underwater. Navigation of the underwater robot in a given area is based on GPS data and the acquired position information from deployed USN motes with emphasis on user interaction. Body structures, sensors and actuators, governing microcontroller boards, and swimming and interaction features are described for a typical entertainment dolphin robot. Actions of mouth-opening, tail splash or water blow through a spout hole are typical responses of interaction when touch sensors on the body detect users' demand. Dolphin robots should turn towards people who demand to interact with them, while swimming autonomously. The functions that are relevant to human-robot interaction as well as robot movement such as path control, obstacle detection and avoidance are managed by microcontrollers on the robot for autonomy. Distance errors are calibrated periodically by the known position data of the deployed USN motes.

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF

Empirical Forecast of Corotating Interacting Regions and Geomagnetic Storms Based on Coronal Hole Information (코로나 홀을 이용한 CIR과 지자기 폭풍의 경험적 예보 연구)

  • Lee, Ji-Hye;Moon, Yong-Jae;Choi, Yun-Hee;Yoo, Kye-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.305-316
    • /
    • 2009
  • In this study, we suggest an empirical forecast of CIR (Corotating Interaction Regions) and geomagnetic storm based on the information of coronal holes (CH). For this we used CH data obtained from He I $10830{\AA}$ maps at National Solar Observatory-Kitt Peak from January 1996 to November 2003 and the CIR and storm data that Choi et al. (2009) identified. Considering the relationship among coronal holes, CIRs, and geomagnetic storms (Choi et al. 2009), we propose the criteria for geoeffective coronal holes; the center of CH is located between $N40^{\circ}$ and $S40^{\circ}$ and between $E40^{\circ}$ and $W20^{\circ}$, and its area in percentage of solar hemispheric area is larger than the following areas: (1) case 1: 0.36%, (2) case 2: 0.66%, (3) case 3: 0.36% for 1996-2000, and 0.66% for 2001-2003. Then we present contingency tables between prediction and observation for three cases and their dependence on solar cycle phase. From the contingency tables, we determined several statistical parameters for forecast evaluation such as PODy (the probability of detection yes), FAR (the false alarm ratio), Bias (the ratio of "yes" predictions to "yes" observations) and CSI (critical success index). Considering the importance of PODy and CSI, we found that the best criterion is case 3; CH-CIR: PODy=0.77, FAR=0.66, Bias=2.28, CSI=0.30. CH-storm: PODy=0.81, FAR=0.84, Bias=5.00, CSI=0.16. It is also found that the parameters after the solar maximum are much better than those before the solar maximum. Our results show that the forecasting of CIR based on coronal hole information is meaningful but the forecast of goemagnetic storm is challenging.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Sloshing Reduction Characteristics to Baffle for Cylindrical Liquefied Fuel Tank subject to Dynamic Load (동하중을 받는 원통형 액화연료 탱크의 배플에 따른 슬로싱 저감 특성)

  • Koo, Jun-Hyo;Cho, Jin-Rae;Jeong, Weui-Bong;Kim, Dang-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.950-959
    • /
    • 2009
  • Liquid fluctuation called sloshing within liquid-storage tank gives rise to the significant effect on the dynamic stability of tank. This liquid sloshing can be effectively suppressed by installing baffles within the tank, and the suppression effect depends strongly on the design parameters of baffle like the baffle configuration. The present study is concerned with the parametric evaluation of the sloshing suppression effect for the CNG-storage tank, a next generation liquefied fuel for vehicles, to the major design parameters of baffle, such as the baffle configuration, the installation angle and height, the hole size of baffle. The coupled FEM-FVM analysis was employed to effectively reflect the interaction between the interior liquid flow and the tank elastic deformation.

A study on the Additive Decomposition Generated during the Via-Filling Process (Via-Filling 공정시 발생하는 첨가제 분해에 관한 연구)

  • Lee, Min Hyeong;Cho, Jin Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.153-157
    • /
    • 2013
  • The defect like the void or seam is frequently generated in the PCB (Printed Circuit Board) Via-Filling plating inside via hole. The organic additives including the accelerating agent, inhibitor, leveler, and etc. are needed for the copper Via-Filling plating without this defect for the plating bath. However, the decomposition of the organic additive reduces the lifetime of the plating bath during the plating process, or it becomes the factor reducing the reliability of the Via-Filling. In this paper, the interaction of each organic additives and the decomposition of additive were discussed. As to the accelerating agent, the bis (3-sulfopropyl) disulfide (SPS) and leveler the Janus Green B (JGB) and inhibitor used the polyethlylene glycol 8000 (PEG). The research on the interaction of the organic additives and decomposition implemented in the galvanostat method. The additive decomposition time was confirmed in the plating process from 0 Ah/l (AmpereHour/ liter) to 100 Ah/l with the potential change.

SPACIAL POEM: A New Type of Experimental Visual Interaction in 3D Virtual Environment

  • Choi, Jin-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.405-410
    • /
    • 2008
  • There is always a rhythm in our language and speech. As soon as we speech out, even just simple words and voice we make are edited as various emotions and information. Through this process we succeed or fail in our communication, and it becomes a fun communication or a monotonous delivery. Even with the same music, impression of the play can be different according to each musician' s emotion and their understanding. We 'play' our language in the same way as that. However, I think, people are used to the variety, which is, in fact, the variation of a set format covered with hollow variety. People might have been living loosing or limiting their own creative way to express themselves by that hollow variety. SPACIAL POEM started from this point. This is a new type of 'real-time visual interaction' expressing our own creative narrative as real-time visual by playing a musical instrument which is an emotional human behavior. Producing many kinds of sound by playing musical instruments is the same behavior with which we express our emotions through. There are sensors on each hole on the surface of the musical instrument. When you play it, sensors recognize that you have covered the holes. All sensors are connected to a keyboard, which means your playing behavior becomes a typing action on the keyboard. And I programmed the visual of your words to spread out in a virtual 3D space when you play the musical instrument. The behavior when you blow the instrument, to make sounds, changes into the energy that makes you walk ahead continuously in a virtual space. I used a microphone sensor for this. After all by playing musical instrument, we get back the emotion we forgot so far, and my voice is expressed with my own visual language in virtual space.

  • PDF

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

Hydraulic and structural interaction of a double-lined tunnel lining due to drainhole blockings (이중구조 라이닝의 배수공 막힘에 따른 수리-역학적 상호작용)

  • Shin, Jong-Ho;Nam, Taek-Soo;Chae, Sung-Eun;Yoon, Jae-Ung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.243-254
    • /
    • 2009
  • Tunnel problems relate to pore water pressure generally occur due to the restriction of groundwater flow into the tunnel which is generally caused by the deterioration of drainage systems. Previous studies have identified the problem as combined mechanical and hydraulic interaction occasions. In this study, detrimental effects of pore water pressure on the lining were investigated using the finite element method considering deterioration of the drainage system. Particularly, double-lined linings with drain-holes are considered. Deterioration of drainage system is represented as blockages of drain-holes. It is identified that the secondary lining ran be influenced by the deterioration of drainage system. It is shown that a tunnel with all drain-holes blocked moved upward, and unbalanced drain-hole blocking may result in torsional behavior of the tunnel which causes significant damages to the secondary linings.