• 제목/요약/키워드: Hole Design

검색결과 907건 처리시간 0.028초

원심력을 받는 회전원판내 원공주위 응력집중 최소화를 위한 핀홀위치 최적화 (Optimization of Pin-hole Location to Minimize Stress Concentration around Hole in Rotating Disc under Centrifugal Force)

  • 한동섭;한근조;김태형;심재준
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.131-138
    • /
    • 2004
  • The objective of this paper is to decide optimal location of a pin-hole to minimize stress concentration around the hole in a rotating disc. The focus of this investigation is to evaluate the effect of pin-hole on stress distribution around the hole using optimum design technique and finite element analysis. Design variables are the radial and the angular location of pin-hole from center of the hole and objective function is the maximum stress around hole in a rotating disc. Using first order method of optimization technique, we found that the maximum equivalent stress around the hole with optimized pin-hole could be reduced by 15.1% compared to that without pin-hole.

원심력을 받는 회전원판내 원공주위 응력집중 최소화를 위한 핀홀위치 최적화 (Optimization of Pin-hole Location to Minimize Stress Concenstration around Hole in Rotating Disc under Centrifugal Force)

  • 한근조;김태형;안성찬;심재준;한동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.574-578
    • /
    • 2003
  • The objective of this paper is to decide optimal location of pin-hole to minimize stress concenstation around hole in rotating disc. The focus of this investigation is to evaluate the effect of pin-hole for stress distribution around hole using optimum design technic and finite element analysis. Design variables are radial and angular location of pin-hole from center of hole, objective function is maximum stress around hole in rotating disc. We use first order method of optimization technic.

  • PDF

The implementation of the integrated design process in the hole-plan system

  • Ruy, Won-Sun;Ko, Dae-Eun;Yang, Young-Soon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.353-361
    • /
    • 2012
  • All current shipyards are using the customized CAD/CAM programs in order to improve the design quality and increase the design efficiency. Even though the data structures for ship design and construction are almost completed, the implementation related to the ship design processes are still in progress so that it has been the main causes of the bottleneck and delay during the middle of design process. In this study, we thought that the hole-plan system would be a good example which is remained to be improved. The people of outfitting division who don't have direct authority to edit the structural panels, should request the hull design division to install the holes for the outfitting equipment. For acceptance, they should calculate the hole position, determine the hole type, and find the intersected contour of panel. After consideration of the hull people, the requested holes are manually installed on the hull structure. As the above, many processes are needed such as communication and discussion between the divisions, drawings for hole-plan, and the consideration for the structural or production compatibility. However this iterative process takes a lot of working time and requires mental pressure to the related people and cross-division conflict. This paper will handle the hole-plan system in detail to automate the series of process and minimize the human efforts and time-consumption.

철도객차용 크로스 빔의 경량화 설계에 관한 연구 (A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach)

  • 장득열;전형용
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

Susceptor design by numerical analysis in horizontal CVD reactor

  • Lee, Jung-Hun;Yoo, Jin-Bok;Bae, So-Ik
    • 한국결정성장학회지
    • /
    • 제15권4호
    • /
    • pp.135-140
    • /
    • 2005
  • Thermal-fluid analysis was performed to understand the thermal behavior in the horizontal CVD reactor thereby to design a susceptor which has a uniform deposition rate during silicon EPI growing. Four different types of susceptor designs, standard (no hole susceptor), hole $\sharp$1 (240 mm), hole $\sharp$2 (150 mm) and hole $\sharp$3 (60 mm), were simulated by CFD (Computational Fluid Dynamics) tool. Temperature, gas flow, deposition rate and growth rate were calculated and analyzed. The degree of flatness of EPI wafer loaded on the susceptor was computed in terms of silicon growth rate. The simulation results show that the temperature and thermal distribution in the wafer are greatly dependent on inner diameter of hole susceptor and demonstrate that the introduction of hole in the susceptor can degrade wafer flatness. Maximum temperature difference appeared around holes. As the diameter of the hole decreases, flatness of the wafer becomes poor. Among the threes types of susceptors with the hole, optimal design which resulted a good uniform flatness ($5\%$) was obtained when using hole $\sharp$1.

SSD 테스터의 알루미늄 합금 Guide Hole의 마모에 관한 연구 (A Study on Wear of Aluminum Alloy Guide Hole in SSD Tester)

  • 함응진;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.19-24
    • /
    • 2022
  • The purpose of this research is to determine the hardness of guide hole. A guide pin and a guide hole of SSD(Solid State Drive) tester used to mount SSD in a fixed position accurately. The guide pin and guide hole are worn by friction due to repeated operation, and the wear is concentrated on the guide hole made of weak material rather than the guide pin made of relatively strong material. Because of that reason, it is often overdesigned in the design stage because it can lose its function. If the guide hole is made soft, the manufacturing cost will decrease, but the accuracy will decrease due to wear caused by repeated friction. If the guide hole is manufactured excessively, the manufacturing process becomes complicated and the manufacturing cost increases. It is essential to design a guide hole, but since there is no standard or verified data that can be referenced, it is difficult to design. Experimental device which guides in the same way as the SSD tester is used for this research, and three types of anodizing state are experimented for different hardness. Also, weight of COK(Change over Kit) were analyzed by measuring the wear amount and state of the guide hole according to the number of repeated attachment and detachment.

홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계 (Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique)

  • 이기돈;김광용
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석 (Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines)

  • 김용래;송한호
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석 (The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole)

  • 전형용;성낙원;한근조
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

플라스틱 사출 금형의 분할면 자동 생성을 위한 관통 특징 형상 추출 알고리즘의 개발 (Passage Feature Recognition Algorithm for Automatic Parting Surface Generation in Plastic Injection Mold)

  • 정강훈;이건우
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.196-205
    • /
    • 2000
  • This paper proposes a topology-based algorithm for recognizing the passage features using a concept of multi-face hole loop. The Multi-face hole loop is a concetpual hole loop that is formed over several connected faces. A passage feature is recognized in the proposed approach by two multi-face hole loops that constitute its enterance and exit. The algorithm proposed in this paper checks the connectivity of the two multi-face hole loops to recognize passage features. The total number of passage features in a part is calculated from Euler equation and is compared with the number of found passage features to decide when to terminate. To find all multi-face hole loops in a part, this paper proposes an algorithm for finding all combinations of connected faces. The edge convexity is used to judge the validity of multi-face hole loops. By using the algorithm proposed in this paper, the passage features could be recognized effectively. The approach proposed in this paper is illustrated with several example parts.

  • PDF