• Title/Summary/Keyword: Hole Clinching

Search Result 4, Processing Time 0.018 seconds

A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching (마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구)

  • Gao, L.H.;Kang, G.S.;Lee, K.;Kim, B M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process (Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합)

  • Ahn, Nam-Sik;Lee, Chan-Joo;Lee, Jung-Min;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.691-698
    • /
    • 2012
  • The joining of aluminum and HSS (high-strength steel) by the conventional clinching process is limited by the low formability of HSS. Defects in the clinching joint, such as necking of the upper sheet, cracks, and lack of interlocking, are produced by the different ductility properties of HSS and aluminum. In this study, we propose the hole clinching process for joining Al6061 and SPFC440, in which deformation of SPFC440 is avoided by drilling a hole in the SPFC440. The dimensions of the interlocking in the hole-clinched joint necessary to provide the required joint strength were determined. Based on the volume constant of the hole clinching process, the shapes of the tools were designed by finite element (FE)-analysis. A hole clinching experiment was performed to verify the proposed process. A cross-section of the joint showed good agreement with the results of the FE-analysis. The lap shear strength was found to be 2.56 kN, which is higher than required joint strength.

Numerical Study for the Improvement of Tapered-hole Clinching Joint Strength of Fiber Metal Laminates and Aluminum 5052 using the Taguchi Method (다구찌 기법을 이용한 섬유금속적층판과 Al 5052 합금의 경사 홀 클린칭 접합력 향상을 위한 수치적 연구)

  • Kang, D.S.;Lee, B.E.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • The purpose of the current study is to improve the clinching joint strength of aluminum and fiber metal laminates (FMLs) comprised of three layers. The joining of FML and Al 5052 by a conventional clinching joint has some disadvantages such as necking of the upper sheet, lack of interlocking, defects caused by the vertical load, and especially loss of strength of the composite material due to the low ductility. In the current study, a tapered-hole clinching method is proposed as an alternative for the joining of Al 5052 and FMLs. A hole with a tapered shape is formed before the joining process. The design parameters were evaluated using the Taguchi method for the geometry of the tapered hole in order to determine the maximum separation load. The diameter of the punch corner, clearance, punch stroke and the tapered length were used as the main variables in the Taguchi method. In conclusion, the contribution ratio for each of the fours variable examined was 35.07%, 22.44%, 21.32% and 14.11%, respectively. In addition, the appropriate combination of the design parameters can make a 5% improvement in the vertical direction joint strength.

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.