Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
Steel and Composite Structures
/
v.46
no.1
/
pp.53-73
/
2023
Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.
Proceedings of the Korean Society of Crop Science Conference
/
2022.10a
/
pp.78-78
/
2022
Food productivity in North Korea is about 50% lower than in South Korea. In order to increase the productivity of major crops, it is necessary to develop early maturing, disease resistance, and high-yielding varieties and apply them early. Since the late 1990s, North Korea has been actively developing potatoes, rice and com as major food crops, and soybeans are considered important as a protein-supplying crop. Domestic cultivated varieties, which are expected to be most adaptable eco-climatologically, are mainly selected from soil with high nutrient soil. It is necessary to test separately for adaptability in low organic soil. So it is very necessary to apply technology to improve soil improvement through rotational crop selection in the middle and long-term. Therefore, this study was conducted to test the adaptability to low organic soils of domestic cultivars and to select varieties. In 2021 there are twenty two (22) varieties of soybeans were grown in low organic soil at the field of Chungbuk National University. This year twenty two (22) varieties of soybeans were also grown in low organic soil at the field of Chungbuk National University. Sowing was done on June 10, the planting distance was 70cm × 15cm, after opening the cotyledons fully, the soybeans were thinned and leaving two plants per hole. In addition, various types of growth characteristics and quantitative components were investigated to evaluate the adaptability to low organic soil of domestic varieties. This study was conducted to investigate the growth characteristics and quantitative components of soybean varieties grown in low organic soil. The flowering period of 22 varieties of soybeans was about 14 days from July 22 to August 4. The flowers of the beans were white, purple, light purple and the pubescence color was gray and brown where most of them were gray. The highest plant height was up to 130.4 cm and lowest was 20.3 cm, highest stem length was up to 119.5 cm and lowest was 15.3 cm. Highest first pod height (FPH) was up to 34.0 cm and lowest was 3.0 cm. Highest stem diameter was up to 15.76mm and lowest was 1.76 mm. Number of main stem nodes was up to 19 and at least 1. Number of branch was up to 10 and at least 0. The number of pod per plant was up to 121. Bacterial pustule has been spread in soybean field.
In this study, the optimal method for injection of neutralizer to restraint the leakage of acid drainage in embankment structure composed of pyrite rocks is proposed. Finite Element Analysis was performed to examine the seepage effect caused by injection of neutralizer into the embankment structure. The diameter of the neutralizer injection hole was selected as 50cm, the interval space of injection ranged from 1m to 4m and the injecting pressure ranged from 100kPa to 220 kPa were applied for the numerical analysis. According to the analysis results, the saturation time of the whole embankment structure was shown to be fast at a relatively low injecting pressure in the case of injecting interval space of 1.0m and injecting pressure of 130kPa and in the case of injecting interval space of 2.0m and injecting pressure of 160kPa. When the interval space of injection for saturation of whole embankment structure is selected as 3m, various injection pressures can be applied from 130kPa to 190kPa, and the saturation time of whole embankment is similar regardless of the injection pressure. Therefore, the optimal method for injection of neutralizer considering economic efficiency was selected as injecting interval space of 3.0m and injection pressure of 130kPa.
The conventional bench blasting method uses the bottom initiation in all blast holes in a round, whereas the MDS (mixture detonation system) method applies the bottom and top initiations alternately according to the spatial position or temporal sequence of each blast hole. The former and latter are respectively called the SMDS (spatial MDS) and TMDS (temporal MDS) methods. Another variant called MMDS (modified MDS) is designed for the specific use in the site having a fly-rock problem. This study compares the MDS method to the conventional method in the aspect of rock fracturing effect. The comparison is made by numerical simulations for a two-row bench blasting model in the LS-DYNA. The SPH-FEM coupling method is utilized for constructing the blasting model. The SPH elements are used for the rock in the near-field region of the blast holes, and the FEM elements for that in the far-field region. The RHT material model is used for the rock. As a result of the simulations, it was found that up to 0.4 m deeper damaged zone was appeared in the SMDS method than in the conventional method for the case of the burden 1.6 m and bench height 3.0 m. In addition, the fly-rock velocity to the normal direction of the bench slope was appeared about 2.0 m/s lower in the MMDS method compared to the other methods.
Objective: This study aimed to determine the predictive performance of non-contrast CT (NCCT) signs for hemorrhagic growth after intracerebral hemorrhage (ICH) when stratified by onset-to-imaging time (OIT). Materials and Methods: 1488 supratentorial ICH within 6 h of onset were consecutively recruited from six centers between January 2018 and August 2022. NCCT signs were classified according to density (hypodensities, swirl sign, black hole sign, blend sign, fluid level, and heterogeneous density) and shape (island sign, satellite sign, and irregular shape) features. Multivariable logistic regression was used to evaluate the association between NCCT signs and three types of hemorrhagic growth: hematoma expansion (HE), intraventricular hemorrhage growth (IVHG), and revised HE (RHE). The performance of the NCCT signs was evaluated using the positive predictive value (PPV) stratified by OIT. Results: Multivariable analysis showed that hypodensities were an independent predictor of HE (adjusted odds ratio [95% confidence interval] of 7.99 [4.87-13.40]), IVHG (3.64 [2.15-6.24]), and RHE (7.90 [4.93-12.90]). Similarly, OIT (for a 1-h increase) was an independent inverse predictor of HE (0.59 [0.52-0.66]), IVHG (0.72 [0.64-0.81]), and RHE (0.61 [0.54-0.67]). Blend and island signs were independently associated with HE and RHE (10.60 [7.36-15.30] and 10.10 [7.10-14.60], respectively, for the blend sign and 2.75 [1.64-4.67] and 2.62 [1.60-4.30], respectively, for the island sign). Hypodensities demonstrated low PPVs of 0.41 (110/269) or lower for IVHG when stratified by OIT. When OIT was ≤ 2 h, the PPVs of hypodensities, blend sign, and island sign for RHE were 0.80 (215/269), 0.90 (142/157), and 0.83 (103/124), respectively. Conclusion: Hypodensities, blend sign, and island sign were the best NCCT predictors of RHE when OIT was ≤ 2 h. NCCT signs may assist in earlier recognition of the risk of hemorrhagic growth and guide early intervention to prevent neurological deterioration resulting from hemorrhagic growth.
Dong Jin Kim;Hyun-Cheol Lee;Seung-Ho Shin;Wan-Kuen Jo
Journal of Environmental Science International
/
v.33
no.9
/
pp.633-643
/
2024
Hereunder, the eco-friendly photocatalytic CO2 transformation capability of Cu-deposited black TiO2 (Cu/BTiO2) was evaluated to investigate if this photocatalyst proceeds the thermodynamically- and kinetically-satisfactory CO2 transformation into CH4. The clustered Cu-deposited BTiO2 (Cu/BTiO2) and Cu/BTiO2 architectures revealed noticeable photocatalytic CO2 transformation abilities, whereas the pristine TiO2 and BTiO2 catalysts displayed no significant photocatalytic CO2 transformation abilities. Especially, the photocatalytic CO2 transformation rates of a representative Cu/BTiO2 architecture were 104, 209, 272, 322, and 361 μmol/g at the irradiation times of 2, 4, 6, 8, and 10 h, respectively, while the photocatalytic CO2 transformation rates of Cu/BTiO2 were 61, 139, 217, 270, and 309 μmol/g at the same irradiation times, respectively. The promoted photocatalytic CO2 transformation ability of the Cu/BTiO2 architecture was assigned to the excellent electron-hole separation tendency, which was verified by the photoluminescence analysis. The composition ratio of Cu incorporated into BTiO2 in the Cu/BTiO2 architectures was crucial in CH4 generation. In addition, the Cu/BTiO2 architecture displayed eminent photodurability, which was verified by the consecutive experiment cycle, and the mechanistic process for CO2 transformation into CH4 via the Cu/BTiO2 architecture was established. The electronic framework of the Cu/BTiO2 architecture was established on the basis of its band gap and valence band value. Conclusively, the Cu/BTiO2 architecture is an outstanding tool for thermodynamically- and kinetically-satisfactory photocatalytic CO2 transformation into CH4 that application under simulated sunlight irradiation.
Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.
Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.
Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.
Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.