• Title/Summary/Keyword: Hoek-Brown constants

Search Result 9, Processing Time 0.022 seconds

Strength Parameters of Basalts in Jeju Island according to Rock Failure Criterions (암반의 파괴기준에 따른 제주도 현무암의 강도정수)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.15-27
    • /
    • 2016
  • In this study, a series of triaxial compressive strength tests were conducted for basaltic intact rocks sampled in the northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. Hoek-Brown constants $m_i$ were estimated from the results of the triaxial compression tests, and the properties of the Hoek-Brown constants $m_i$ were investigated. In addition, the cohesion and internal friction angle, strength parameters of Mohr-Coulomb failure criterion, obtained from the results of the triaxial compression tests were compared and analyzed with those estimated from Hoek-Brown failure criterion, respectively. As results, it was found that the Hoek-Brown constant $m_i$ is deeply related to the internal friction angle. As the internal friction grows, the Hoek-Brown constant $m_i$ increases exponentially. The cohesions estimated from the Hoek-Brown failure criterion, on average, are approximately 24% higher than those obtained from the Mohr-Coulomb failure criterion. The internal friction angles estimated from the Hoek-Brown failure criterion are similar to those obtained from the Mohr-Coulomb failure criterion.

A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock

  • Bagheripour, Mohammad Hossein;Rahgozar, Reza;Pashnesaz, Hassan;Malekinejad, Mohsen
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-81
    • /
    • 2011
  • In this paper, a complement to the Hoek-Brown criterion is proposed in order to derive the strength of anisotropic rock from strength of the corresponding truly intact rock. The complement is a decay function, which unlike other modifications or suggestions made in the past, is multiplied to the function of the original Hoek-Brown failure criterion for intact rock. This results in a combined and extended form of the criterion which describes the strength of anisotropic rock as a varying fraction of the corresponding truly intact rock strength. Statistical procedures and in particular regression analyses were conducted into data obtained in experiments conducted in the current research program and those collected from the literature in order to define the Hoek-Brown's criterion complement. The complement function was best described by a simple polynomial including only three constants to be empirically evaluated. Further investigations also showed that these constants can be related to the other readily available parameters of rock material which further facilitate determining the constants. A great and prime advantage of the proposed complement is that it is mathematically simple including the least possible number of empirical constants which are easily estimated with minimum experimental effort. Moreover, proposed concept does not suggests any change to the original Hoek-Brown criterion itself or its constants and serves whenever anisotropy does exist in the rock. This further implies on the possibility of using any other failure criterion for intact rock in conjunction with the compliment to reach the strength of anisotropic rock.

A Damage Model for Predicting the Nonlinear Behavior of Rock (암석의 비선형 거동해석을 위한 손상모델 개발)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2002
  • An experimental model which considers post-peak behaviors and pre-peak damage characteristics representing changes of elastic moduli in each damage level was developed. From experiments, some damage thresholds of rocks were determined, and regression analyses were carried out in order to represent changes of elastic moduli in each damage level as functions of confining pressure. In addition, it was intended to simulate post-peak behaviors with Hoek-Brown constants, $m_r\;and\;s_r$ for post-failure. The developed experimental model was implemented into $FLAC^{2D}$ by a FISH function. From results of parametric studies on Hoek-Brown constants for post-peak, it was revealed that uniaxial compressive strength more highly depends upon $s_r$, although it depends on both $m_r\;and\;s_r$. It was also shown that the post-peak slopes of stress-stain curves depend mainly on $m_r$. When the optimum models obtained from parametric studies were applied to numerical analysis, they predicted maximum strengths obtained from experiments and well simulated stiffness changes due to damage levels.

Estimation of Hoek-Brown Constant mi for the Basaltic Intact Rocks in Jeju Island (제주도 현무암의 Hoek-Brown 계수 mi의 추정)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.21-31
    • /
    • 2020
  • In this study, Hoek-Brown constants (mi) were calculated through nonlinear regression analyses using the results of the triaxial compression tests for the basaltic intact rocks in Jeju Island. The relationships of the mi with the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS) and UCS/BTS of the Jeju basalts were investigated, respectively. In addition, a method that can be used in determining Hoek-Brown failure envelopes including the tensile and compressive failures of the Jeju basalts has been proposed. As results, the mi values had no clear correlations with the UCS, BTS and UCS/BTS of the Jeju basalts, but there were two strong correlations between UCS and mi/UCS, and between BTS and mi/BTS of the Jeju basalts. In addition, it was found that the tensile strengths calculated by the Hoek-Brown failure criterion underestimate the tensile strengths of the Jeju basalts through the relationship between the mi and UCS/BTS of the Jeju basalts. The method presented in this study is considered to be useful in determining the Hoek-Brown failure envelope for the tensile and compressive failures of the Jeju basalts.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.

Nonlinear Strength Parameters and Failure Characteristics of Anisotropy Rock - Shales (혈암의 이방성을 고려한 비선형 강도정수 및 파괴규준식 산정)

  • 김영수;이재호;허노영;방인호;성언수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.713-720
    • /
    • 2000
  • The directional response of strength and deformation on the rocks acting by external loads is called by strength and deformability anisotropy, respectively. Peak strength and its failure criteria of anisotro rocks have been studied and reported. Many authors have investigated in detail the behavior of triaxial peak strength of anisotropic rocks(Jaeger 1960, McLamore & Gray 1967, Hoek & Brown 1980, Ramamurthy & Rao 1985). They concluded that the triaxial strength of anisotropic rocks varies according to the inclination of discontinuity in specimens. And, the minimun triaxial strength occurs in the specmen with 60° of inclination angle ; and specimens with 0° or 90° inclination have maximum triaxial strength. Based on the experimental result, the behavior triaxial strength is investigated. The triaxial compression tests due to the angle bedding plane have been conducted and the material constants, 'm' and 's', cohesion and angle of friction and nonlinear strength parameters to fit for the failure criterion were derived from the regression analysis. And, the experimental date are employed to examine three existing failure criteria for peak strength, provided by Jaeger, McLamore and Hoek & Brown and Ramamurthy & Rao. For a shale, the suitability of the failure criteiria of triaxial peak strength for anisotropic rocks is discussed.

  • PDF

Influences of seepage force and out-of-plane stress on cavity contracting and tunnel opening

  • Zou, Jin-Feng;Chen, Kai-Fu;Pan, Qiu-Jing
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.907-928
    • /
    • 2017
  • The effects of seepage force and out-of-plane stress on cavity contracting and tunnel opening was investigated in this study. The generalized Hoek-Brown (H-B) failure criterion and non-associated flow rule were adopted. Because of the complex solution of pore pressure in an arbitrary direction, only the pore pressure through the radial direction was assumed in this paper. In order to investigate the effect of out-of-plane stress and seepage force on the cavity contraction and circular tunnel opening, three cases of the out-of-plane stress being the minor, intermediate, or major principal stress are assumed separately. A method of plane strain problem is adopted to obtain the stress and strain for cavity contracting and circular tunnel opening for three cases, respectively, that incorporated the effects of seepage force. The proposed solutions were validated by the published results and the correction is verified. Several cases were analyzed, and parameter studies were conducted to highlight the effects of seepage force, H-B constants, and out-of-plane stress on stress, displacement, and plastic radius with the numerical method. The proposed method may be used to address the complex problems of cavity contraction and tunnel opening in rock mass.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.