• Title/Summary/Keyword: History-based modeling

Search Result 168, Processing Time 0.027 seconds

Hand Tracking based on CamShift using Motion History Image (운동 히스토리 영상을 활용한 CamShift 기반 손 추적 기법)

  • Gil, Jong In;Kim, Mina;Whang, Whankyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.182-192
    • /
    • 2017
  • In this paper, we propose hand tracking system combined with color and motion information. Most of hand detection and tracking systems are performed by modeling skin color. However, in this approach, since it is highly influenced by light or surrounding objects, accurate values cannot be derived constantly. Also, depending on the skin color, hand tracking may be interrupted by not only the hand but also the background with a color similar to that of the face and skin. Therefore, we design the hand tracking that can effectively track a hand by using motion history image(MHI) and combining it with CamShift. The proposed system is implemented based on C/C++, and the experiments proved that the proposed method shows stable and excellent performance.

Multiple Moving Object Detection Using Different Algorithms (이종 알고리즘을 융합한 다중 이동객체 검출)

  • Heo, Seong-Nam;Son, Hyeon-Sik;Moon, Byungin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1828-1836
    • /
    • 2015
  • Object tracking algorithms can reduce computational cost by avoiding computation over the whole image through the selection of region of interests based on object detection. So, accurate object detection is an important task for object tracking. The background subtraction algorithm has been widely used in moving object detection using a stationary camera. However, it has the problem of object detection error due to incorrect background modeling, whereas the method of background modeling has been improved by many researches. This paper proposes a new moving object detection algorithm to overcome the drawback of the conventional background subtraction algorithm by combining the background subtraction algorithm with the motion history image algorithm that is usually used in gesture detection. Although the proposed algorithm demands more processing time because of time taken for combining two algorithms, it meet the real-time processing requirement. Moreover, experimental results show that it has higher accuracy compared with the previous two algorithms.

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Assessment of seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams: Evaluation of code recommendations

  • Elmira Tavasoli Yousef Abadi;Mohammad T. Kazemi
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • The main aim of this study is to quantify the code seismic design coefficients of the RCS system, which consisted of reinforced concrete columns and steel beams, based on the FEMA P-695 methodology. The underlying intention is to evaluate the seismic performance of the RCS system at the system level rather than the connection level. A set of 24 archetype buildings with a various number of stories, beam span lengths, gravity load levels, and seismic load levels are selected and designed based on the prevailing code requirements. Nonlinear analytical models are developed and validated by experimental tests. The pushover and response history dynamic analyses are conducted to evaluate the required data in the performance quantification process. The results show that the design coefficients suggested by the code are acceptable. However, the level of conservatism is very high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system.

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

Version Management of Business Processes Managed by BPM (BPM에서 관리되는 업무 프로세스의 버전관리)

  • Cho, Eunmi;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.126-132
    • /
    • 2006
  • Recently, business environments have been changing quickly. To establish competitive advantage, most enterprises have been using information systems such as Enterprise Resource Planning (ERP), Supply Chain Management (SCM) and Customer Relationship Management (CRM). Many consider Business Process Management (BPM) a new innovative solution for enterprise-wide processes. As the BPM system is used more widely and matures, new techniques and functions will be developed by commercial vendors. However, they mainly focus on correctly executing process models, and user convenience has not been considered. In this paper, we have developed a new method of designing business processes, which provides users with an easy modeling interface. The method is based on version management. Version management of a process enables a history of the process model to be recorded. In order to prevent wasted storage, not all of the process versions are stored. An initial version and changes to each process are stored by automatically detecting changes. Our method enhances the convenience of the modeling business processes and thus helps the process designer. A prototype system is presented to verify the effectiveness of our method.

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

Predictive Modeling Design for Fall Risk of an Inpatient based on Bed Posture (침대 자세 기반 입원 환자의 낙상 위험 예측 모델 설계)

  • Kim, Seung-Hee;Lee, Seung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • This study suggests a design of predictive modeling for a hospital fall risk based on inpatients' posture. Inpatient's profile, medical history, and body measurement data along with basic information about a bed they use, were used to predict a fall risk and suggest an algorithm to determine the level of risk. Fall risk prediction is largely divided into two parts: a real-time fall risk evaluation and a qualitative fall risk exposure assessment, which is mostly based on the inpatient's profile. The former is carried out by recognizing an inpatient's posture in bed and extracting rule-based information to measure fall risk while the latter is conducted by medical staff who examines an inpatient's health status related to hospital fall risk and assesses the level of risk exposure. The inpatient fall risk is determined using a sigmoid function with recognized inpatient posture information, body measurement data and qualitative risk assessment results combined. The procedure and prediction model suggested in this study is expected to significantly contribute to tailored services for inpatients and help ensure hospital fall prevention and inpatient safety.

The Evaluation-based CBR Model for Security Risk Analysis (보안위험분석을 위한 평가기반 CBR모델)

  • Bang, Young-Hwan;Lee, Gang-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.7
    • /
    • pp.282-287
    • /
    • 2007
  • Information society is dramatically developing in the various areas of finance, trade, medical service, energy, and education using information system. Evaluation for risk analysis should be done before security management for information system and security risk analysis is the best method to safely prevent it from occurrence, solving weaknesses of information security service. In this paper, Modeling it did the evaluation-base CBD function it will be able to establish the evaluation plan of optimum. Evaluation-based CBD(case-based reasoning) functions manages a security risk analysis evaluation at project unit. it evaluate the evaluation instance for beginning of history degree of existing. It seeks the evaluation instance which is similar and Result security risk analysis evaluation of optimum about under using planning.