• Title/Summary/Keyword: Histone Deacetylase 2

Search Result 121, Processing Time 0.024 seconds

Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells (인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석)

  • Kim Mi-Young;Son Jung-Kyu;Lee Suk-Kyeong;Ku Hyo-Jeong
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

Trichostatin A Induces Apoptotic Cell Death in Human Breast Carcinoma Cells through Activation of Caspase-3

  • Kim, Nsm-Deuk;Kim, Seaho;Choi, Yung-Hyun;Im, Eun-Ok;Lee, Ji-Hyeon;Kim, Dong-Kyoo
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2000
  • Trichostatin A (TSA) is a Streptomyces product, which inhibits the enzyme activity of histone deacetylase. It is also known as an inducer of apoptosis in several human cancer cell lines. In this study, we investigated the mechanism of apoptosis induced by TSA in MDA-MB-231 human breast carcinoma cells. The cytotoxicity of TSA on MDA-MB-231 cells was assessed by MTT assay. The cell viability was decreased dose-dependently and the IC\ulcorner value was about 100 ng/ml after 48 h treatment with TSA. Morphological change and DNA ladder formation, the biochemical hallmarks of apoptotic cell death, were observed after treatment of TSA in a concentration-dependent manner, which was accompanied with cleavage of poly(ADP-ribose) polymerase and $\beta$-catenin, and activation of caspase-3. TSA treatment up-regulated the expression of a cyclin-dependent kinase inhibitor p21 (Wafl/Cip1) protein, a key regulatory protein of the cell cycle. However, there is no detectable change of both Bcl-2 and Bax expressions. These results demonstrated that TSA might inhibit cell growth through apoptosis in human breast carcinoma MDA-MB-231 cells.

  • PDF

Targeting Catecholamines to Develop New Drugs for Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애 치료제 개발을 위한 카테콜아민계 표적화)

  • Sung-Cherl Jung;Chang-Hwan Cho;Hye-Ji Kim;Eun-A Ko;Min-Woo Ha;Oh-Bin Kwon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • The prevalence of attention deficit hyperactivity disorder (ADHD), a developmental neuropsychiatric disorder, is high among children and adolescents. The pathogenesis of ADHD is mediated with genetic, biological, and environmental factors. Most therapeutic drugs for ADHD have so far targeted biological causes, primarily by regulating catecholaminergic neurotransmitters. However, ADHD drugs that are clinically treated have various problems in their addictiveness and drug stability; thus, it is recommended that efficacy and safety should be secured through simultaneous prescription of multiple drugs rather than a single drug treatment. Accordingly, it is necessary to develop drugs that newly target pathogenic mechanisms of ADHD. In this study, we attempt to confirm the possibility of developing new drugs by reviewing dopamine-related developmental mechanisms of neurons and their correlation with ADHD. Histone deacetylase inhibitors (HDACi) can regulate the concentration of intracellular dopamine in neurons by expressing vesicular monoamine transporter 2 and inducing the exocytosis of neurotransmitters to the synaptic cleft, thereby promoting the development of neurons and signal transmission. This cellular modulation of HDACi is expected to treat ADHD by regulating endogenous catecholamines such as dopamine. Although studies are still in the preclinical stage, HDAC inhibitors clearly have potential as a therapeutic agent with low addictiveness and high efficacy for ADHD treatment.

Identification of druggable genes for multiple myeloma based on genomic information

  • Rahmat Dani Satria;Lalu Muhammad Irham;Wirawan Adikusuma;Anisa Nova Puspitaningrum;Arief Rahman Afief;Riat El Khair;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.31.1-31.8
    • /
    • 2023
  • Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.

Gene Expression Profiling of Non-Hodgkin Lymphomas

  • Zekri, Abdel-Rahman Nabawy;Hassan, Zeinab Korany;Bahnassy, Abeer Ahmed;Eldahshan, Dina Hassan;El-Rouby, Mahmoud Nour Eldin;Kamel, Mahmoud Mohamed;Hafez, Mohamed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4393-4398
    • /
    • 2013
  • Background: Chromosomal translocations are genetic aberrations associated with specific non-Hodgkin lymphoma (NHL) subtypes. This study investigated the differential gene expression profile of Egyptian NHL cases based on a microarray approach. Materials and Methods: The study included tissue samples from 40 NHL patients and 20 normal lymph nodes used as controls. Total RNA was extracted and used for cDNA microarray assays. The quantitative real time polymerase chain reaction was used to identify the aberrantly expressed genes in cancer. Results: Significant associations of 8 up-regulated and 4 down-regulated genes with NHL were observed. Aberrant expression of a new group of genes not reported previously was apparent, including down-regulated NAG14 protein, 3 beta hydroxy-delta 5-c27 steroid oxi-reductase, oxi-glutarate dehydrogenase (lipo-amide), immunoglobulin lambda like polypeptide 3, protein kinase x linked, Hmt1, and caveolin 2 Tetra protein. The up-regulated genes were Rb binding protein 5, DKFZP586J1624 protein, protein kinase inhibitor gamma, zinc finger protein 3, choline ethanolamine phospho-transferase CEPT1, protein phosphatase, and histone deacetylase-3. Conclusions: This study revealed that new differentially expressed genes that may be markers for NHL patients and individuals who are at high risk for cancer development.

Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun;Shin, Mi-Jung;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

In vivo Radiosensitization Effect of H DAC Inhibitor, SK-7041 on RIF-1 Cell Line (히스톤 탈아세틸효소 억제제 SK-7041의 RIF-1 세포주에 대한 생체내 방사선 감수성 증진 효과)

  • Chie, Eui-Kyu;Shin, Jin-Hee;Kim, In-Ah;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Purpose: To test the radiosensitizing effect of the newly synthesized novel histone deacetylase inhibitor, SK-7041 in vivo. Materials and Method: The RIF-l cell line was implanted into the back of a 6-week-old female C3H mouse, intradermally, The mice were grouped into control, drug, radiation (RT), and RT+drug group. SK-7041, 4 mg/kg was administered intraperitoneally for six cycles every 12 hours for mice in the drug and RT+drug group, An identical volume of phosphate buffered saline (PBS) was administered at the same frequency to mice in the control and RT groups. A single 5 Gy fraction was delivered to mice in RT and RT+drug group 6 hours after the fourth delivery. The volume of the implanted tumor was measured every 2~3 days to formulate the growth delay curve. Results: For the control, drug, RT, and RT +drug groups, the average duration for implanted tumor to reach a volume of $1,500mm^3$ was 10 days, 10 days, 9 days, and 12 days, respectively. Moreover, the tumor volume on D14 was $276.7mm^3$, $279.9mm^3$, $292.5mm^3$, and $185.5mm^3$, respectively (p=0.0004). The difference for the change in slope for the control and drug versus the RT and RT+drug groups were borderline significant (p=0.0650). Conclusion: The results of this study indicate that SK-7041 has a radiosensitizing effect for the RIF-1 cell line in vivo at a low concentration and this effect may be synergistic. Implementing this result to clinical trial is warranted.

Effects of Bcl-2 Overexpressing on the Apoptotic Cell Death Induced by HDAC Inhibitors in Human Leukemic U937 Cells (HDAC 저해제에 의한 인체 백혈병 U937 세포의 apoptosis 유발에 미치는 Bcl-2의 영향)

  • Lee, In-Hyuk;Hur, Man-Gyu;Park, Dong-Il;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.552-560
    • /
    • 2007
  • Histone deacetylase (HDAC) is overexpressed in a variety of cancers and is closely correlated with oncogenic factors. HDAC inhibitors such as trichostatin A(TSA) and sodium butyrate (Na-B) have been shown to induce apoptosis in vitro and in vivo in many cancer cells. The anti-apoptotic Bcl-2 protein has the remarkable ability to prevent cell death and Bcl-2 overexpression has been reported to protect against cell death. We previously reported that the apoptotic cell death of human leukemic U937 cells by TSA and Na-B treatment was associated with the down-regulation of Bcl-2 expression and activation of caspases. In the present study, we investigated the effects of Bcl-2 overexpression on the growth inhibition, cell cycle arrest and apoptosis induced by TSA and Na-B in U937 cells. TSA-induced growth inhibition, cell cycle arrest and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells however Na-B did not affected. Induction of apoptosis by TSA was accompanied by down-regulation of Bcl-2 expression, activation of caspase-3, -8 and -9, and degradation of DNA fragmentation factor/inhibitor of caspase-activated DNase, which was blocked by the overexpression of Bcl-2. Collectively, these findings suggest that ectopic expression of Bcl-2 appeared to inhibit TSA-induced apoptosis by interfering with inhibition of Bcl-2 and caspase activation.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.