• 제목/요약/키워드: Histone

검색결과 547건 처리시간 0.029초

Epigenetic Changes in Asthma: Role of DNA CpG Methylation

  • Bae, Da-Jeong;Jun, Ji Ae;Chang, Hun Soo;Park, Jong Sook;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • 제83권1호
    • /
    • pp.1-13
    • /
    • 2020
  • For the past three decades, more than a thousand of genetic studies have been performed to find out the genetic variants responsible for the risk of asthma. Until now, all of the discovered single nucleotide polymorphisms have explained genetic effects less than initially expected. Thus, clarification of environmental factors has been brought up to overcome the 'missing' heritability. The most exciting solution is epigenesis because it intervenes at the junction between the genome and the environment. Epigenesis is an alteration of genetic expression without changes of DNA sequence caused by environmental factors such as nutrients, allergens, cigarette smoke, air pollutants, use of drugs and infectious agents during pre- and post-natal periods and even in adulthood. Three major forms of epigenesis are composed of DNA methylation, histone modifications, and specific microRNA. Recently, several studies have been published on epigenesis in asthma and allergy as a powerful tool for research of genetic heritability in asthma albeit epigenetic changes are at the starting point to obtain the data on specific phenotypes of asthma. In this presentation, we mainly review the potential role of DNA CpG methylation in the risk of asthma and its sub-phenotypes including nonsteroidal anti-inflammatory exacerbated respiratory diseases.

사람 유방암 세포 MCF-7에서 Benzo(k)fluoroanthene과 genistein이 CYP1A1 유전자 발현에 미치는 영향 (Effect of Benzo(k)fluoroanthene and Genistein on CYP1A1 Gene Expression in Human Breast Cancer MCF-7 Cells.)

  • 양소연;민경난;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권3호
    • /
    • pp.128-136
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. First, we investigated the effect of on CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. We found that B(k)F significantly up-regulates the level of CYP1A1 prompter activity, EROD and CYP1A1 mRNA. When cells were treated with genistein, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, genistein inhibited the B(k)F-induced CYP1A1 promoter activity and mRNA level at high concentration. Furthermore, in this study, effects of HDAC(histone deacetvlase) inhibitors on human prostate cancer cells proliferation were examined. HC-toxin, SAHA and TSA inhibited cell proliferation in PC3 cells. A novel HDAC inhibitor, IN2001 also suppressed the growth of PC3 cells. And IN2001 and SAHA increased S phase and G2/M phase at 12 hrs treatment but cells were arrested G0/G1 phase at 45 hrs treatment. The HC-toxin treatment for 24 hrs and 48 hrs increased G0/G1 at low concentration ($0.1\mu\textrm{m}$) but increased G2/M at more than concentration of $1\mu\textrm{m}$. TSA increased G2/M phase. These findings height the possbility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of prostate cancer.

  • PDF

Comprehensive analysis of AHL homologous genes encoding AT-hook motif nuclear localized protein in rice

  • Kim, Ho-Bang;Oh, Chang-Jae;Park, Yung-Chul;Lee, Yi;Choe, Sung-Hwa;An, Chung-Sun;Choi, Sang-Bong
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.680-685
    • /
    • 2011
  • The AT-hook motif is a small DNA-binding protein motif that has been found in the high mobility group of non-histone chromosomal proteins. The Arabidopsis genome contains 29 genes encoding the AT-hook motif DNA-binding protein (AHL). Recent studies of Arabidopsis genes (AtAHLs) have revealed that they might play diverse functional roles during plant growth and development. In this report, we mined 20 AHL genes (OsAHLs) from the rice genome database using AtAHL genes as queries and characterized their molecular features. A phylogenetic tree revealed that OsAHL proteins can be classified into 2 evolutionary clades. Tissue expression pattern analysis revealed that all of the OsAHL genes might be functionally expressed genes with 3 distinct expression patterns. Nuclear localization analysis using transgenic Arabidopsis showed that several OsAHL proteins are exclusively localized in the nucleus, indicating that they may act as architectural transcription factors to regulate expression of their target genes during plant growth and development.

Transcriptional Repression of High-Mobility Group Box 2 by p21 in Radiation-Induced Senescence

  • Kim, Hyun-Kyung;Kang, Mi Ae;Kim, Mi-Sook;Shin, Young-Joo;Chi, Sung-Gil;Jeong, Jae-Hoon
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.362-372
    • /
    • 2018
  • High mobility group box 2 (HMGB2) is an abundant, chromatin-associated, non-histone protein involved in transcription, chromatin remodeling, and recombination. Recently, the HMGB2 gene was found to be significantly downregulated during senescence and shown to regulate the expression of senescent-associated secretory proteins. Here, we demonstrate that HMGB2 transcription is repressed by p21 during radiation-induced senescence through the ATM-p53-p21 DNA damage signaling cascade. The loss of p21 abolished the downregulation of HMGB2 caused by ionizing radiation, and the conditional induction of p21 was sufficient to repress the transcription of HMGB2. We also showed that the p21 protein binds to the HMGB2 promoter region, leading to sequestration of RNA polymerase and transcription factors E2F1, Sp1, and p300. In contrast, NF-Y, a CCAAT box-binding protein complex, is required for the expression of HMGB2, but NF-Y binding to the HMGB2 promoter was unaffected by either radiation or p21 induction. A proximity ligation assay results confirmed that the chromosome binding of E2F1 and Sp1 was inhibited by p21 induction. As HMGB2 have been shown to regulate premature senescence by IR, targeting the p21-mediated repression of HMGB2 could be a strategy to overcome the detrimental effects of radiation-induced senescence.

Gametophytic Abortion in Heterozygotes but Not in Homozygotes: Implied Chromosome Rearrangement during T-DNA Insertion at the ASF1 Locus in Arabidopsis

  • Min, Yunsook;Frost, Jennifer M.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.448-458
    • /
    • 2020
  • T-DNA insertional mutations in Arabidopsis genes have conferred huge benefits to the research community, greatly facilitating gene function analyses. However, the insertion process can cause chromosomal rearrangements. Here, we show an example of a likely rearrangement following T-DNA insertion in the Anti-Silencing Function 1B (ASF1B) gene locus on Arabidopsis chromosome 5, so that the phenotype was not relevant to the gene of interest, ASF1B. ASF1 is a histone H3/H4 chaperone involved in chromatin remodeling in the sporophyte and during reproduction. Plants that were homozygous for mutant alleles asf1a or asf1b were developmentally normal. However, following self-fertilization of double heterozygotes (ASF1A/asf1a ASF1B/asf1b, hereafter AaBb), defects were visible in both male and female gametes. Half of the AaBb and aaBb ovules displayed arrested embryo sacs with functional megaspore identity. Similarly, half of the AaBb and aaBb pollen grains showed centromere defects, resulting in pollen abortion at the bi-cellular stage of the male gametophyte. However, inheritance of the mutant allele in a given gamete did not solely determine the abortion phenotype. Introducing functional ASF1B failed to rescue the AaBb- and aaBb-mediated abortion, suggesting that heterozygosity in the ASF1B gene causes gametophytic defects, rather than the loss of ASF1. The presence of reproductive defects in heterozygous mutants but not in homozygotes, and the characteristic all-or-nothing pollen viability within tetrads, were both indicative of commonly-observed T-DNA-mediated translocation activity for this allele. Our observations reinforce the importance of complementation tests in assigning gene function using reverse genetics.

마우스 수정란에 있어서 부계 DNA 손상이 부계 DNA 퇴화 및 초기 배발달에 미치는 영향 (Effect of Paternal DNA Damage on Paternal DNA Degradation and Early Embryonic Development in Mouse Embryo: Supporting Evidence by GammaH2AX Expression)

  • 김창진;이경본
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.197-204
    • /
    • 2019
  • This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.

Rkp1/CPC2, a RACK1 Homolog, Interacts with Pck1 to Regulate PKC-Mediated Signaling in Schizosaccharomyces pombe

  • Won, Mi-Sun;Jang, Young-Joo;Hoe, Kwang-Lae;Park, Jo-Young;Chung, Kyung-Sook;Kim, Dong-Uk;Sun, Nam-Kyu;Kim, Sung-Ai;Song, Kyung-Bin;Yoo, Hyang-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.592-597
    • /
    • 2002
  • The Rkp1/CPC2, a receptor for activated protein kinase C of Schizosaccharomyces pombe, contains seven WD motifs found in the G-protein $\beta$-subunit. A 110-kDa protein was identified to interact with Rkp1/CPC2 by immunoprecipitation and following in vitro binding assay. To examine its kinase activity and binding ability to Rkp1, the $pck1^+$, a PKC homolog of S. pombe, was cloned. Pckl phosphorylated myelin basic protein (MBP) and histone Hl in a phospholipid-dependent and $Ca^{2+}$-independent manner. It was demonstrated that the N-terminal region of Pck1 was responsible for the binding to Rkp1 , thus suggesting that Rkp1 interacted with Pckl to regulate Pckl-mediated signaling in S. pombe.

한방 변증과 양방 협진에 의한 전신성 홍반성 낭창(Systemic Lupus Erythematosus) 치료 1예 (One Case of Systemic Lupus Erythematosus treated by Integrated Therapy of Western Medicine with Oriental Differential Diagnosis of Symptoms and Signs)

  • 정대영;백동기;황상일;신선호;김동웅;한명아
    • 대한한방내과학회지
    • /
    • 제23권2호
    • /
    • pp.306-312
    • /
    • 2002
  • Systemic Lupus Erythematosus(SLE) is a autoimmune disease characterized by combined symtoms of malar rash, discoid rash, neuropsychiatric disorder, renal disorder, hematologic disorder, photosensitivity immunologic disorder, oral ulcer, anti-nuclear antibody, arthritis, pleuritis and pericarditis, etc. Multiple genetic or environmental causes are supposed to facilitate antiboby production to autoantigen such as ds-DNA, histone, phospholipid, red blood cell, platelet, etc. And defective complementary system fail to remove autoantigen-antibody complex, which deposit in multiple organs and result in inflammatory damages. SLE does not correctly correspond to any specific category of oriental medicine. But, accoring to previous reports, it can be controlled by herb medications used differently patients-to-patients. So we are to report this one SLE case being successfully controlled by classic corticosteroids with herb medications based on oriental diffrential diagnosis of symptoms and signs.

  • PDF

Colletotrichum fioriniae에 의한 호박 과실 탄저병의 발생 보고 (First Report of Colletotrichum fioriniae Causing Anthracnose on Fruit of Pumpkin (Cucurbita moschata) in Korea)

  • 김준영;김병섭
    • 식물병연구
    • /
    • 제26권3호
    • /
    • pp.190-193
    • /
    • 2020
  • 강원도 강릉시 사천면 비닐하우스에서 재배중인 호박 과실에 탄저병이 발생하였다. 병든 호박 과실에 분홍색의 분생포자 층이 동심원으로 나타나 점차 확대되어 과실이 무르는 증상을 나타내었다. 원인균을 규명하기 위하여 순수 분리 후 균학적 특성 및 ITS, GAPDH, CHS-1, HIS3, ACT, TUB2 염기서열 분석결과 Colletotrichum fioriniae로 동정하였다. 또한, 병원성이 확인되었고 접종시험에서 동일한 균이 반복적으로 분리되었다. 따라서, 이러한 결과를 바탕으로 C. fioriniae에 의한 호박 과실에 발생하는 탄저병의 발생을 국내 처음으로 보고한다.

Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells

  • Park, Jong Kook;Seo, Jung Seon;Lee, Suk Kyeong;Chan, Kenneth K;Kuh, Hyo-Jeong
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.591-598
    • /
    • 2018
  • Epigenetic silencing is considered to be a major mechanism for loss of activity in tumor suppressors. Reversal of epigenetic silencing by using inhibitors of DNA methyltransferase (DNMT) or histone deacetylases (HDACs) such as 5-Aza-CdR and FK228 has shown to enhance cytotoxic activities of several anticancer agents. This study aims to assess the combinatorial effects of genesilencing reversal agents (5-Aza-CdR and FK228) and oxaliplatin in gastric cancer cells, i.e., Epstein-Barr virus (EBV)-negative SNU-638 and EBV-positive SNU-719 cells. The doublet combinatorial treatment of 5-Aza-CdR and FK228 exhibited synergistic effects in both cell lines, and this was further corroborated by Zta expression induction in SNU-719 cells. Three drug combinations as 5-Aza-CdR/FK228 followed by oxaliplatin, however, resulted in antagonistic effects in both cell lines. Simultaneous treatment with FK228 and oxaliplatin induced synergistic and additive effects in SNU-638 and SNU-719 cells, respectively. Three drug combinations as 5-Aza-CdR prior to FK228/oxaliplatin, however, again resulted in antagonistic effects in both cell lines. This work demonstrated that efficacy of doublet synergistic combination using DNMT or HDACs inhibitors can be compromised by adding the third drug in pre- or post-treatment approach in gastric cancer cells. This implies that the development of clinical trial protocols for triplet combinations using gene-silencing reversal agents should be carefully evaluated in light of their potential antagonistic effects.