• 제목/요약/키워드: Histograms

검색결과 365건 처리시간 0.021초

모수적 부트스트랩을 이용한 차등정보보호 히스토그램의 동질성 검정 (A parametric bootstrap test for comparing differentially private histograms)

  • 손주희;박민정;정성규
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.1-17
    • /
    • 2022
  • 본 논문에서는 모수적 부트스트랩을 이용한 두 차등정보보호 히스토그램의 동질성 검정을 제안한다. 제안된 검정 방법은 차등정보보호 히스토그램과 적용된 차등정보보호 수준 정보만 있을 때에도 사용 가능하며, 비교하고자 하는 두 히스토그램에 적용된 차등정보보호의 수준이 다를 때에도 사용할 수 있다는 장점이 있다. 검정 방법의 성능을 평가하기 위해 미국과 한국의 연령별 인구분포 자료를 사용하고, 제 1종 오류의 확률이 잘 통제됨과 높은 검정력을 확인한다.

Spatial Histograms for Region-Based Tracking

  • Birchfield, Stanley T.;Rangarajan, Sriram
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.697-699
    • /
    • 2007
  • Spatiograms are histograms augmented with spatial means and covariances to capture a richer description of the target. We present a particle filtering framework for region-based tracking using spatiograms. Unlike mean shift, the framework allows for non-differentiable similarity measures to compare two spatiograms; we present one such similarity measure, a combination of a recent weighting scheme and histogram intersection. Experimental results show improved performance with the new measure as well as the importance of global spatial information for tracking. The performance of spatiograms is compared with color histograms and several texture histogram methods.

  • PDF

조건부 1차원 히스토그램을 이용한 Texture 영상 분할 (A Segmentation Technique of Textured Images Using Conditional 1-D Histograms)

  • 양형렬;이정환;김성대
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

중첩된 버킷을 사용하는 다차원 히스토그램에 대한 개선된 알고리즘 (An Improved Algorithm for Building Multi-dimensional Histograms with Overlapped Buckets)

  • 문진영;심규석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권3호
    • /
    • pp.336-349
    • /
    • 2003
  • 히스토그램은 최근들어 많은 관심을 끌고 있다. 히스토그램은 주로 상용 데이타베이스 관리 시스템에서 질의 최적화를 위해 속성의 값에 대한 데이타 분포를 추정하는데 사용되었다. 최근에는 근사 질의와 스트림 데이타에 대한 연구 분야에서 히스토그램에 대한 관심이 커지고 있다. 관계형 데이타베이스에서 두 개 이상의 속성에 대한 결합 데이타 분포를 근사시키는 가장 간단한 방법은 각 속성의 데이타 분포가 결합 데이타 분포에 독립적이라고 가정하는 속성 값 독립(Attribute Value Independence: AVI) 가정하 에서 각각의 속성에 대해서 히스토그램을 만드는 것이다 그러나 실제 데이타에서 이 가정은 잘 맞지 않는다. 따라서 이 문제를 해결하기 위해서 웨이블릿, 랜덤 샘플링, 다차원 히스토그램과 같은 기법들이 제안되 었다. 그 중에서 GENHIST는 실수형 속성에 대한 데이타 분포를 근사시키기 위해 고안된 다차원의 히스토그램이다. GENHIST는 데이타 분포를 좀 더 효과적으로 근사시키기 위해서 중첩되는 버킷을 사용한다. 본 논문에서는 SSE(Sum Squared Error)를 최소화시키는 중첩되는 버킷들의 최적 빈도를 결정하는 OPT 알고리즘을 제안한다. 처음에 GENHIST에 의해 중첩되는 버킷으로 구성되는 히스토그램을 만든 후에 OPT 알고리즘에 의해서 각 버킷의 빈도를 다시 계산해서 GENHIST를 개선시킬 수 있다. 실험 결과는 OPT 알고리즘이 GENHIST에 의해 만들어진 히스토그램의 정확도를 크게 개선시킴을 보여준다.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • 제12권3호
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

히스토그램 보간에 의한 영상 검색 (Image Search Using Interpolated Color Histograms)

  • 이효종
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.701-706
    • /
    • 2002
  • 영상의 색상 정보는 비슷한 영상들의 유사도를 효과적으로 측정하는데 사용된다. 그러나, 색상정보의 크기는 영상 데이터베이스에서 효율적으로 다루기에는 너무나 방대하다. 본 논문에서는 히스토그램 보간법에 의하여 유사한 영상들을 검색하는 새로운 방법을 제시한다 알고리즘의 기본 원리는 색상 히스토그램의 분포를 이용하여 영상을 검색하는 기존 방법에서 출발한다. 그러나, 질의 영상과 대상 영상과의 유사도를 결정하는데 있어서 보간법에 의하여 히스토그램의 분포도를 간략화 시킨다는 근본적인 차이를 가지고 있다. 색상 히스토그램의 분포는 최적 차수의 다항식으로 보간되어서 표현되었다. 히스토그램의 분포가 보간된 후에는 저차원 다항식의 계수들만이 색상 구분자로서 데이터베이스에 저장되고 검색하는데 활용될 수 있다. 제안된 방법은 실제 영상들에 적용되었으며 만족할 만한 결과를 보여주고 있다.

시공간 데이타베이스에서 다차원 시퀀스 데이타의 선택도추정 (Selectivity Estimation for Multidimensional Sequence Data in Spatio-Temporal Databases)

  • 신병철;이종연
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권1호
    • /
    • pp.84-97
    • /
    • 2007
  • 선택도 추정 기법은 질의 최적화를 위해 현재 상용 데이터 베이스에서 많이 사용되고 있고 히스토그램은 가장 많이 사용되는 선택도 추정 기법중의 하나이다. 최근에 시공간 데이터 베이스 관련 연구들에서 이러한 선택도 추정 기법이 기존의 시간 공간 데이타베이스 선택도 추정 기법을 확장하여 활발하게 연구되었다. 하지만 기존의 시공간 데이타베이스 선택도 추정 연구는 주로 이동 객체와 같은 시계열 데이타만 고려하였다. 또한 기존의 연구는 과거시점부터 현재 시점까지 시간적 범위 질의에 대한 선택도 추정은 불가능하였다. 따라서 본 논문에서는 시공간 데이타베이스에서 과거 시점에서 현재시점까지 시퀀스 데이타의 시간적 범위 질의를 위한 히스토그램을 구축하고 이를 이용한 효과적인 선택도 추정 기법을 제안한다. 제안한 히스토그램을 이용하면 과거부터 현재까지 시퀀스 데이타의 선택도 추정이 가능하고, 범위시간 선택도 추정 기법이 가능하며 효과적인 히스토그램 유지 기법의 적용이 가능하다.

Sub Oriented Histograms of Local Binary Patterns for Smoke Detection and Texture Classification

  • Yuan, Feiniu;Shi, Jinting;Xia, Xue;Yang, Yong;Fang, Yuming;Wang, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1807-1823
    • /
    • 2016
  • Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

히스토그램을 이용한 얼굴 표정 인식 방법 (A Face Expression Recognition Method using Histograms)

  • 허경무
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.520-525
    • /
    • 2014
  • Generally, feature area detection methods are widely used for face expression recognition by detecting the feature areas of human eyes, eyebrows and mouth. In this paper, we proposed a face expression recognition method using the histograms of the face, eyes and mouth for many applications including robot technology. The experimental results show that the proposed method has a new type of face expression recognition capability compared to conventional methods.