• Title/Summary/Keyword: Histogram similarity

Search Result 163, Processing Time 0.02 seconds

Coated Tongue Region Extraction using the Fluorescence Response of the Tongue Coating by Ultraviolet Light Source (설태의 자외선 형광 반응을 이용한 설태 영역 추출)

  • Choi, Chang-Yur;Lee, Woo-Beom;Hong, You-Sik;Nam, Dong-Hyun;Lee, Sang-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.181-188
    • /
    • 2012
  • An effective extraction method for extracting a coated tongue is proposed in this paper, which is used as the diagnostic criteria in the tongue diagnosis. Proposed method uses the fluorescence response characteristics of the coated tongue that is occurred by using the ultraviolet light. Specially, this method can solved the previous problems including the issue in the limits of the diagnosis environment and in the objectivity of the diagnosis results. In our method, original tongue image is acquired by using the ultraviolet light, and binarization is performed by thresholding a valley-points in the histogram that corresponds to the color difference of tongue body and tongue coating. Final view image is presented to the oriental doctor, after applying the canny-edge algorithm to the binary image, and edge image is added to the original image. In order to evaluate the performance of the our proposed method, after building a various tongue image, we compared the true region of coated tongue by the oriental doctor's hand with the extracted region by the our method. As a result, the proposed method showed the average 87.87% extraction ratio. The shape of the extracted coated tongue region showed also significantly higher similarity.

Emotion-based Video Scene Retrieval using Interactive Genetic Algorithm (대화형 유전자 알고리즘을 이용한 감성기반 비디오 장면 검색)

  • Yoo Hun-Woo;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.514-528
    • /
    • 2004
  • An emotion-based video scene retrieval algorithm is proposed in this paper. First, abrupt/gradual shot boundaries are detected in the video clip representing a specific story Then, five video features such as 'average color histogram' 'average brightness', 'average edge histogram', 'average shot duration', and 'gradual change rate' are extracted from each of the videos and mapping between these features and the emotional space that user has in mind is achieved by an interactive genetic algorithm. Once the proposed algorithm has selected videos that contain the corresponding emotion from initial population of videos, feature vectors from the selected videos are regarded as chromosomes and a genetic crossover is applied over them. Next, new chromosomes after crossover and feature vectors in the database videos are compared based on the similarity function to obtain the most similar videos as solutions of the next generation. By iterating above procedures, new population of videos that user has in mind are retrieved. In order to show the validity of the proposed method, six example categories such as 'action', 'excitement', 'suspense', 'quietness', 'relaxation', 'happiness' are used as emotions for experiments. Over 300 commercial videos, retrieval results show 70% effectiveness in average.

Fast Multi-Resolution Exhaustive Search Algorithm Based on Clustering for Efficient Image Retrieval (효율적인 영상 검색을 위한 클러스터링 기반 고속 다 해상도 전역 탐색 기법)

  • Song, Byeong-Cheol;Kim, Myeong-Jun;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.117-128
    • /
    • 2001
  • In order to achieve optimal retrieval, i.e., to find the best match to a query according to a certain similarity measure, the exhaustive search should be performed literally for all the images in a database. However, the straightforward exhaustive search algorithm is computationally expensive in large image databases. To reduce its heavy computational cost, this paper presents a fast exhaustive multi-resolution search algorithm based on image database clustering. Firstly, the proposed algorithm partitions the whole image data set into a pre-defined number of clusters having similar feature contents. Next, for a given query, it checks the lower bound of distances in each cluster, eliminating disqualified clusters. Then, it only examines the candidates in the remaining clusters. To alleviate unnecessary feature matching operations in the search procedure, the distance inequality property is employed based on a multi-resolution data structure. The proposed algorithm realizes a fast exhaustive multi-resolution search for either the best match or multiple best matches to the query. Using luminance histograms as a feature, we prove that the proposed algorithm guarantees optimal retrieval with high searching speed.

  • PDF

Application Feasibility Study of Non-local Means Algorithm in a Miniaturized Vein Near-infrared Imaging System (정맥 관찰용 소형 근적외선 영상 시스템에서의 비지역적평균 알고리즘 적용 가능성 연구)

  • Hyun-Woo Jeong;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.679-684
    • /
    • 2023
  • Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.

A Study on Features Analysis for Retrieving Image Containing Personal Information on the Web (인터넷상에서 개인식별정보가 포함된 영상 검색을 위한 특징정보 분석에 관한 연구)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.91-101
    • /
    • 2011
  • Internet is becoming increasingly popular due to the rapid development of information and communication technology. There has been a convenient social activities such as the mutual exchange of information, e-commerce, internet banking, etc. through cyberspace on a computer. However, by using the convenience of the internet, the personal IDs(identity card, driving license, passport, student ID, etc.) represented by the electronic media are exposed on the internet frequently. Therefore, this study propose a feature extraction method to analyze the characteristics of image files containing personal information and a image retrieval method to find the images using the extracted features. The proposed method selects the feature information from color, texture, and shape of the images, and the images as searched by similarity analysis between feature information. The result which it experiments from the image which it acquires from the web-based image DB and correct image retrieval rate is 89%, the computing time per frame is 0.17 seconds. The proposed method can be efficiently apply a system to search the image files containing personal information and to determine the criteria of exposure of personal information.

Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm (단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정)

  • Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.485-494
    • /
    • 2017
  • This study focuses on automatic image registration between multiple IR images using simple preprocessing method and modified local feature extraction algorithm. The input images were preprocessed by using the median and absolute value after histogram equalization, and it could be effectively applied to reduce the brightness difference value between images by applying the similarity of extracted features to the concept of angle instead of distance. The results were evaluated using visual and inverse RMSE methods. The features that could not be achieved by the existing local feature extraction technique showed high image matching reliability and application convenience. It is expected that this method can be used as one of the automatic registration methods between multi-sensor images under specific conditions.

A Color Correct Method based on Relative Ortho Rectification Precision in High-resolution Aerial Ortho Images (항공정사영상의 상대적인 지상좌표 위치오차에 따른 색상보정)

  • Park, Sung-Hwan;Jung, Hyung-Sup;Jung, Kyungsik;Kim, Kyong-Hwi
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.495-506
    • /
    • 2017
  • This study was carried out to effectively perform relative color correction for high-resolution aerial ortho image. For this study, relative geometrical error between adjacent images was analyzed. The block sum method is proposed to reduce the relative geometrical error. We used the regression coefficients determined based on the block sum size to perform the color correction. As a result, it was confirmed that the relative color correction was visually performed well. Quantitative analysis was performed through histogram similarity analysis. It is proved that block sum method is useful for relative color correction. Particularly, the block sum size was very important to correct color based on the amount of relative geometrical error.

3D Model Retrieval using Distribution of Interpolated Normal Vectors on Simplified Mesh (간략화된 메쉬에서 보간된 법선 벡터의 분포를 이용한 3차원 모델 검색)

  • Kim, A-Mi;Song, Ju-Whan;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1692-1700
    • /
    • 2009
  • This paper proposes the direction distribution of surface normal vectors as a feature descriptor of three-dimensional models. Proposed the feature descriptor handles rotation invariance using a principal component analysis(PCA) method, and performs mesh simplification to make it robust and nonsensitive against noise addition. Our method picks samples for the distribution of normal vectors to be proportional to the area of each polygon, applies weight to the normal vectors, and applies interpolation to enhance discrimination so that the information on the surface with less area may be less reflected on composing a feature descriptor. This research measures similarity between models with a L1-norm in the probability density histogram where the distances of feature descriptors are normalized. Experimental results have shown that the proposed method has improved the retrieval performance described in an average normalized modified retrieval rank(ANMRR) by about 17.2% and the retrieval performance described in a quantitative discrimination scale by 9.6%~17.5% as compared to the existing method.

  • PDF

Image Retrieval Using Combination of Color and Multiresolution Texture Features (칼라 및 다해상도 질감 특징 결합에 의한 영상검색)

  • Chun Young-deok;Sung Joong-ki;Kim Nam-chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.930-938
    • /
    • 2005
  • We propose a content-based image retrieval(CBIR) method based on an efncient combination of a color feature and multiresolution texture features. As a color feature, a HSV autocorrelograrn is chosen which is blown to measure spatial correlation of colors well. As texture features, BDIP and BVLC moments are chosen which is hewn to measure local intensity variations well and measure local texture smoothness well, respectively. The texture features are obtained in a wavelet pyramid of the luminance component of a color image. The extracted features are combined for efficient similarity computation by the normalization depending on their dimensions and standard deviation vectors. Experimental results show that the proposed method yielded average $8\%\;and\;11\%$ better performance in precision vs. recall than the method using BDIPBVLC moments and the method using color autocorrelograrn, respectively and yielded at least $10\%$ better performance than the methods using wavelet moments, CSD, color histogram. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.

Color Image Encryption using MLCA and Transformation of Coordinates (MLCA와 좌표변환을 이용한 컬러 영상의 암호화)

  • Yun, Jae-Sik;Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1469-1475
    • /
    • 2010
  • This paper presents a problem of existing encryption methods using pseudo-random numbers based on MLCA or complemented MLCA and proposes a method to resolve this problem. The existing encryption methods have a problem which the edge of original image appear on encrypted image because the image have color similarity of adjacent pixels. In this proposed method, we transform the value and spatial coordinates of all pixels by using pseudo-random numbers based on MLCA. This method can resolve the problem of existing methods and improve the level of encryption by encrypting pixel coordinates and pixel values of original image. The effectiveness of the proposed method is proved by conducting histogram and key space analysis.