• 제목/요약/키워드: Histogram shift

검색결과 56건 처리시간 0.034초

연속적인 비디오 프레임에서의 히스토그램을 이용한 객체 인식 및 추적 (Object Recognition and Tracking using Histogram Through Successive Frames)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • 제34권3C호
    • /
    • pp.274-278
    • /
    • 2009
  • 히스토그램에 의한 객체 유형 인식 방법은 최근 들어 많은 연구가 이루어지고 있다. 그러나 대부분의 히스토그램 기반의 객체 추적이 칼라 모델을 사용하여 견실성을 개선하였지만 아직 충분히 견실하다고 할 수 없다. 이러한 단점을 보안하기 위하여 본 논문에서는 연속적인 프레임에서 히스토그램을 이용하여 객체를 표현하고 추적하는 방법을 제시하고자 한다. 자동차를 대상으로 실험한 결과 80m 거리 이내에서 신뢰성 있는 방법임을 확인하였다.

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 박찬준;오성권;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

깊이정보 기반의 혼합 가우시안 분포 히스토그램과 Mean Shift Filter를 이용한 깊이정보 맵 부호화 전처리 (Depth Map coding pre-processing using Depth-based Mixed Gaussian Histogram and Mean Shift Filter)

  • 박성희;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.175-177
    • /
    • 2010
  • 본 논문에서는 MPEG 의 3차원 비디오 시스템의 표준 깊이정보 맵에 대한 효율적인 부호화를 위하여 전처리 방법을 제안한다. 현재 3차원 비디오 부호화(3DVC)에 대한 표준화가 진행 중에 있지만 아직 깊이정보 맵의 부호화 방법에 대한 표준이 확정되지 않은 상태이다. 제안하는 기법에서는 우선, 입력된 깊이정보 맵에 대하여 원래의 히스토그램 분포를 가우시안 혼합모델(GMM)기반의 EM 군집화 기법에 의한 방법으로 분리 후, 분리된 히스토그램을 기반으로 깊이정보 맵을 여러 개의 영상으로 분리한다. 그 후 분리된 각각의 영상을 배경과 객체에 따라 다른 조건의 mean shift filter로 필터링한다. 결과적으로 영상내의 각 영역 경계는 최대한 살리면서 영역내의 화소 값에 대해서는 평균 연산을 취하여 부호화시 효율을 극대화 하고자 하였다. 실험조건은 $1024{\times}768$ 영상에 대해서 50 프레임으로 H.264/AVC base 프로파일로 부호화를 진행하였다. 최종 실험결과 bit rate는 대략 23% ~ 26% 정도 감소하고 부호화 시간도 다소 줄어드는 것을 확인 할 수 있었다.

  • PDF

주 색상 히스토그램 특징과 Mean-Shift 알고리즘을 사용한 사진 자동분류 (Smart Photo Clustering Based on Dominant Color Histogram Feature and Mean-Shift Clustering)

  • 나인섭;최준용;조완현;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.633-636
    • /
    • 2012
  • 최근 디지털카메라와 스마트 폰 등의 모바일 기기가 급속도로 발전 하면서 언제, 어디서나 손쉽게 사진을 찍을 수 있게 되었다. 이런 환경의 변화는 수없이 많은 사진을 양산하게 되었고, 손쉽게 많이 찍은 사진에 대한 분류에 불필요한 시간을 많이 보내게 되었다. 따라서 보다 편리하게 촬영된 사진들을 분류 관리하기에 적합한 자동화된 프로그램이 필요하게 되었다. 이 논문에서는 GPS나 시간 등의 메타 정보에 의존하지 않고 오직 사진의 주 색상을 이용한 히스토그램 특징과 Mean Shift 분류기를 사용하여 대략적인 분류를 시도하려했다. 실험결과를 토대로 살펴보면, 제안된 방법은 사진의 주 색상이 확실한 경우는 잘 분류할 수 있지만 여러 가지 색상이 복잡하게 혼합된 경우와 주 색상을 찾기 어려운 경우에는 분류에 한계가 있음을 알 수 있었다. 따라서 제안된 알고리즘은 사진과 영상들을 개략적인 분류를 실시할 때 주 색상 히스토그램특징이 의미 있는 전역적 특징(Global Feature)중의 하나로 생각된다.

경계선 검출의 향상을 위한 Mean Shift 알고리즘과 자기 적응적 Canny 알고리즘의 활용 (Using Mean Shift Algorithm and Self-adaptive Canny Algorithm for I mprovement of Edge Detection)

  • 신성윤;표성배
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권7호
    • /
    • pp.33-40
    • /
    • 2009
  • 전경계선 검출은 저수준 영상 처리에서 매우 중요하다. 하지만, 대부분의 경계선 검출 방법들은 노이즈 포인트들의 영향으로 효과적이지 못하며 서로 다른 입력 영상에서도 유연하지 못하다. 이 문제를 해결하기 위하여 본 논문에서는 먼저 외부 노이즈 제거 단계를 제시하였고, 다음으로 기울기 폭 히스토그램과 내부 클래스 최소 변이에 따른 양쪽 임계치의 자동 선택을 제시하였다. 이 알고리즘을 사용하여 민감한 노이즈 포인트들의 대부분을 줄일 수 있었고 실제 파라미터를 인위적으로 세팅하지 않고 서로 다른 영상을 위한 목적 임계치를 계산하며, 퍼지 알고리즘에 의하여 경계선 픽셀들을 선택하였다. 결론적으로 이전의 Canny 알고리즘보다 훨씬 더 좋은 결과를 얻을 수 있었다.

Reversible Watermarking Using Adaptive Edge-Guided Interpolation

  • Dai, Ningjie;Feng, Guorui;Zeng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.856-873
    • /
    • 2011
  • Reversible watermarking is an open problem in information hiding field, with embedding the encoded bit '1' or '0' into some sensitive images, such as the law enforcement, medical records and military images. The technique can retrieve the original image without distortion, after the embedded message has been extracted. Histogram-based scheme is a remarkable breakthrough in reversible watermarking schemes, in terms of high embedding capacity and low distortion. This scheme is lack of capacity control due to the requirement for embedding large-scale data, because the largest hidden capacity is decided by the amount of pixels with the peak point. In this paper, we propose a reversible watermarking scheme to enlarge the number of pixels with the peak point as large as possible. This algorithm is based on an adaptive edge-guided interpolation, furthermore, hides messages by interpolation-error, i.e. the difference between the original and interpolated image value. Simulation results compared with other state-of-the-art reversible watermarking schemes in this paper demonstrate the validity of the proposed algorithm.

Reversible Watermarking with Adaptive Embedding Threshold Matrix

  • Gao, Guangyong;Shi, Yun-Qing;Sun, Xingming;Zhou, Caixue;Cui, Zongmin;Xu, Liya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4603-4624
    • /
    • 2016
  • In this paper, a new reversible watermarking algorithm with adaptive embedding threshold matrix is proposed. Firstly, to avoid the overflow and underflow, two flexible thresholds, TL and TR, are applied to preprocess the image histogram with least histogram shift cost. Secondly, for achieving an optimal or near optimal tradeoff between the embedding capacity and imperceptibility, the embedding threshold matrix, composed of the embedding thresholds of all blocks, is determined adaptively by the combination between the composite chaos and the average energy of Integer Wavelet Transform (IWT) block. As a non-liner system with good randomness, the composite chaos is suitable to search the optimal embedding thresholds. Meanwhile, the average energy of IWT block is calculated to adjust the block embedding capacity, and more data are embedded into those IWT blocks with larger average energy. The experimental results demonstrate that compared with the state-of-the-art reversible watermarking schemes, the proposed scheme has better performance for the tradeoff between the embedding capacity and imperceptibility.

가우시안 영역 분리 기반 명암 대비 향상 (Contrast Enhancement based on Gaussian Region Segmentation)

  • 심우성
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.608-617
    • /
    • 2017
  • 영역 분리에 의한 명암대비 방법들이 제안되어 왔지만 영상의 히스토그램에 따라 과포화 되는 부작용이나 밝기 값 보존과 명암대비 효과의 상반 관계에 대한 개선이 필요하다. 본 논문은 다양한 히스토그램에서도 명암 대비가 개선 되도록 영역 분리 시 각 서브 영역이 가우시안 분포를 갖도록 분리하고 영역별 평활화하는 명암 대비 방법을 제안 한다. 영역 분리는 $L^*a^*b^*$ 컬러 공간에서 K-평균 방법과 기대-최대 방법에 의해 영역맵과 확률맵을 생성하며 영역별 히스토그램 평활화 방법은 영역간 히스토그램 중복 최소를 위해 평균값 이동과 영역 분리에서 생성된 확률맵을 변환 함수에 활용함으로써 영역별 밝기값을 보존 하였다. 실험은 기존의 명암 대비 방법들과 평균 밝기 차이와 평균 엔트로피 값을 이용하여 밝기 변화가 적고 영상의 세부 정보가 표현됨에 의한 명암대비 개선을 보인다.

회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식 (Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns)

  • 황민철;고병철;남재열
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.562-568
    • /
    • 2016
  • 본 논문에서는 다양한 교통 표지판 중에서 운전자의 안전운행에 밀접하게 관계가 있는 속도 표지판을 인식하는 연구에 초점을 맞추고 있다. HOG (histogram of gradient)와 LBP (local binary patterns) 가 객체 인식을 위한 대표적 특징이지만, 이러한 특징들은 패턴을 생성할 때 목표 객체의 회전을 고려하지 않음으로써 객체의 회전에 약한 특성을 가지고 있다. 따라서 본 논문에서는 회전에 강인한 이진 패턴을 생성하기 위해 FRIBP (fast rotation-invariant binary patterns)를 제안하고 있다. 본 논문에서 제안하는 FRIBP 알고리즘은 히스토그램에서 불필요한 레이어를 삭제하고 비교연산과 시프트 연산을 제거하여 빠르게 원하는 특징을 추출할 수 있도록 설계되었다. 제안된 FRIBP 알고리즘은 GTSRB (German Traffic Sign Recognition Benchmark) 데이터에 적용되어, 다른 비교 알고리즘과 유사한 성능을 보여주었다. 또한, 12,630개의 테스트 데이터에 대해 기존의 방법들보다 약 0.47초가 향상된 인식 속도를 보여주었다.