Many of non-contact measuring systems are used to estimate surface characteristics owing to their advantages of high speed and undanaged test. In this paper, a new measuring system is proposed to acquire image from CCD camera through back light illumination. Lowpass filter is very useful in view of noise removal and optimum binary image can be made through histogram equalization which is one of the histogram technique to maximize brightness intensity between workpiece and background. Laplacian operator is used to detect workpiece edge from binary image. In case of image treatment applying Laplacian operator, surface roughness is calculated by introducing conversion coefficient for coordinate of pixel which edge is composed of. In summary, the work is concerned with the development of a new technique for roughness measurement by the image processing in turning.
본 논문에서는 LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 방법을 제안한다. 영상 검색 시스템에서는 텍스트가 아닌 사용자가 원하는 특정한 객체를 포함하는 영상을 질의로 입력하여 원하는 영상을 검색한다. 대부분의 연구에서는 색상, 질감, 모양 등과 같은 전역 특징 값을 이용하여 영상을 검색한다. 이러한 전역 특징 값들은 하늘이나 바닥과 같은 배경이 큰 부분을 차지하는 영상에서는 특징 값의 대부분이 배경에서 추출되어 영상 검색의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 컬러를 이용하여 영상의 배경을 고속으로 검출하고 배경의 영향을 줄여 관심 객체의 특징을 강조한다. 제안된 방법에서는 특징 값으로 HSV 컬러 히스토그램과 Local Binary Patterns을 사용한다. 또한, 색의 경계 부분의 패턴을 추출하기 위해 양자화 된 Hue 채널에서 Local Binary Patterns을 추출한다. 제안된 알고리즘의 성능 검증하기 위해, Corel 1000 database를 이용하여 실험한 결과 82% 이상의 높은 검색 정확도를 나타내었다.
이 논문에서는 데이터 은닉기법을 적용하여 BTC 영상을 압축하는 방법을 제안한다. BTC는 일반적인 디지털 영상을 2진 영상으로 압축하는 알고리즘이며 프린터와 같은 응용에서도 사용이 가능하다. BTC 알고리즘에서 이진영상과 함께 전송되는 부가정보의 크기가 이진영상의 크기와 같을 정도로 크므로 이 정보를 정보은닉 기법을 이용하여 줄임으로서 전체적인 전송량을 줄이고자 한다. 하지만 일반적인 BTC 영상에서 데이터 은닉을 위한 공간이 충분하지 않으므로 본 논문에서는 Adaptive AMBTC 알고리즘을 적용하여 생성된 이진영상에 가상 히스토그램을 구한 후 히스토그램 변형을 통하여 부가정보의 양을 줄이고자 한다. 논문에서 제공하는 알고리즘은 기존의 BTC 또는 Adaptive AMBTC 알고리즘에서 생성된 영상과 화질의 차이를 크게 보이지 않는 범위 내에서 파일 크기를 6-11%정도 줄일 수 있다.
본 논문에서는 질감분류를 위해 블록영상 내에서 인접 화소사이의 다차원 명암차이를 이용한 local binary pattern(LBP) 기법을 제안한다. 여기서 블록영상 내 화소 간 명암차는 4방향(세로, 가로, 대각, 역대각) 각각의 인접 화소 간 밝기변화를 고려한 것으로 영상의 질감분류에 이용되는 히스토그램의 레벨수를 감소시켜 계산 부하를 줄이기 위함이다. 또한 블록 내 명암관계를 이진패턴으로 나타낸 것으로 영상의 국부적 속성을 더욱 더 정확하게 반영하여 효과적인 질감분류를 가능하게 함이다. 제안된 기법을 128*128 픽셀의 그레이 영상 USC Texture Mosaic #2을 대상으로 크기와 질감이 다른 24개의 블록영상 각각을 분류하는 실험결과, 기존의 LBP에 비해 빠른 분류속도를 가지며, 임의 크기 블록영상의 분류도 가능함을 확인하였다. 특히 블록영상의 크기가 증가할수록 히스토그램의 레벨 감소폭이 더욱 더 크게 되어 분류속도의 개선정도도 증가함을 알 수 있다.
A measuring system is developed to acquire static image from rotary state through CCD camera in back light illumination by synchronizing chopper to workpiece. In image processing of acquired image, lowpass filter is very useful in view of noise removal, and optimum binary image can be made through histogram equalization which is one of the histogram technique to maximize brightness intensity between workpiece and background. After image treatment applying Laplacian operator, surface roughness is calculated by introducing conversion coefficient of pixel which edge is composed of.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2078-2093
/
2019
Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.
본 논문에서는 Local Binary Pattern 히스토그램의 템플릿 매칭을 이용한 얼굴 표정 인식에서 인식률을 높이는 방법을 제안한다. 이 방법에서, 주어진 얼굴 영상은 작은 크기의 블록으로 분할되고 각 블록에서 구해진 LBP 히스토그램은 블록 특징으로 사용된다. 입력 영상에서의 블록 특징과 모델의 해당블록 특징 사이에서 블록 상이도가 계산된다. 주어진 영상과 모델 영상 사이의 영상 상이도는 블록 상이도의 가중 합으로 계산된다. 기존의 방법들에서는 직관에 따른 블록 가중치를 사용하는데 본 논문에서는 블록 가중치를 트레이닝 샘플들로부터 최적화를 통해서 구하는 방법을 제안하고 있다. 실험을 통해서 제안된 방법이 기존의 방법보다 우수함을 보인다.
A power distribution facility map is drawn on cadastral map. Besides, grid lines are added on the map for sectionalization. For automatic recognition of the map, we first extract recognizing regions. In this paper, we propose an extraction method of recognizing regions by partially extending thinned image. The proposed method is consist of three phases, binarization phase, thinning phase and partial extending phase. The first phase generate a binary image using threshold value which is obtained by histogram analysis. The binary image contains many part of recognizing regions, but not all. The second phase generate thinned image which is generated by appling thinning operator to the binary image. And the third phase extends thinned image from terminal point until satisfying termination condition. The proposed method is tested on several power distribution facility maps, and the results are presented.
본 논문에서는 트림 T형 용접너트의 생산 시스템 중 불량품을 자동으로 선별할 수 있는 자동 비전 선별기의 성능 개선에 관한 방법을 제안한다. 자동 비전 선별기는 용접너트의 영상 신호에 대해 히스토그램을 활용한 경계 판별 및 나사산 검출, 이진 모폴로지 연산(Binary morphology operation)을 활용한 얼룩 검출 등의 기법을 활용한 것이다. 이 비전 선별기 운영에 있어 주된 문제는 컨베이어 벨트 상의 오일 등에 의한 오염에 따른 획득 영상의 화질 저하에 따른 오동작이다. 이를 해결하기 위해 배경 영상과 너트 영상의 구분을 위한 마스킹 기법을 사용하여, 너트 영상 부분에만 히스토그램 평준화를 이용하여 너트 영상부분의 대비를 높이는 전처리 과정을 도입하였다. 이를 통해 배경 부분에서 장비의 오염에 의해 추출되는 특징들의 영향을 없애고 획득 영상의 화질 저하에도 불구하고 오동작의 비율을 10 % 에서 0.2 % 로 낮출 수 있었다.
Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.