• Title/Summary/Keyword: Histogram of Oriented Gradients(HOG)

Search Result 42, Processing Time 0.023 seconds

The Study of Support Vector Machine-based HOG (Histogram of Oriented Gradients) Feature Vector for Recognition by Numerical Sign Language (숫자 수화 인식을 위한 서포트 벡터 머신 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터 연구)

  • Lee, SeungHwan;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.271-272
    • /
    • 2019
  • 현재 4차 산업혁명으로 인해 많은 이들의 삶의 질이 이전보다 개선되었음에도 불구하고, 소외된 계층을 위한 개발은 타 분야에 비해서 더뎌지고 있는 실정이다. 현대의 청각 장애인과 언어 장애인들은 시각 언어인 수화를 이용하여 의사소통을 한다. 그러나 수화는 진입 장벽이 높기 때문에, 이를 사용하지 않는 사람들은 청각 장애인 및 언어 장애인과 의사소통을 하는데 어려움을 겪는다. 본 논문은 이러한 불편함을 줄이기 위해 서포트 벡터 머신(Support Vector Machine, SVM) 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터를 이용하여 수화의 기본인 숫자를 분류할 수 있는 시스템을 구현하여 수화를 번역할 수 있는 가능성을 제안한다.

  • PDF

Fast Pedestrian Detection Using Histogram of Oriented Gradients and Principal Components Analysis

  • Nguyen, Trung Quy;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, we propose a fast and accurate system for detecting pedestrians from a static image. Histogram of Oriented Gradients (HOG) is a well-known feature for pedestrian detection systems but extracting HOG is expensive due to its high dimensional vector. It will cause long processing time and large memory consumption in case of making a pedestrian detection system on high resolution image or video. In order to deal with this problem, we use Principal Components Analysis (PCA) technique to reduce the dimensionality of HOG. The output of PCA will be input for a linear SVM classifier for learning and testing. The experiment results showed that our proposed method reduces processing time but still maintains the similar detection rate. We got twenty five times faster than original HOG feature.

Rotation Invariant Histogram of Oriented Gradients

  • Cheon, Min-Kyu;Lee, Won-Ju;Hyun, Chang-Ho;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.293-298
    • /
    • 2011
  • In this paper, we propose a new image descriptor, that is, a rotation invariant histogram of oriented gradients (RIHOG). RIHOG overcomes a disadvantage of the histogram of oriented gradients (HOG), which is very sensitive to image rotation. The HOG only uses magnitude values of a pixel without considering neighboring pixels. The RIHOG uses the accumulated relative magnitude values of corresponding relative orientation calculated with neighboring pixels, which has an effect on reducing the sensitivity to image rotation. The performance of RIHOG is verified via the index of classification and classification of Brodatz texture data.

A Study of Histogram of Oriented Gradients Feature Vector Based on Support Vector Machine for Medical Image Classification (의료 이미지 분류를 위한 서포트 벡터 머신 기반의 Histogram of Oriented Gradients 특징 벡터 연구)

  • Lee, SeungHwan;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.5-6
    • /
    • 2020
  • 현대 의학에서 의료 영상은 수많은 영상처리 의료기기의 핵심이다. PACS(Picture Archiving Communication System)를 통해 관리되는 의료 영상 자료들은 요청에 따라 저장, 검색 및 전송을 수행하여 신속한 의료 서비스를 가능하게 한다. 그러나 만약에 관리자의 실수로 의료 영상 데이터가 바뀐다면 이는 사용자로 하여금 불편함과 낮은 신뢰성을 야기한다. 그리하여 본 논문에서는 서포트 벡터 머신 기반의 HOG(Histogram of Oriented Gradients) 특징 벡터를 이용하여 X-ray와 MRI(Magnetic Resonance Imaging) 사진을 분류하고 의료 영상 분류의 가능성을 제시하는 것을 목표로 한다.

  • PDF

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

Contrast HOG and Feature Spatial Relocation based Two Wheeler Detection Research using Adaboost

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This article suggests a new algorithm for detecting two-wheelers on the road that have various shapes according to viewpoints. Because of complicated shapes, it is more difficult than detecting a human. In general, the Histograms of Oriented Gradients(HOG) feature is well known as a useful method of detecting a standing human. We propose a method of detecting a human on a two-wheelers using the spatial relocation of HOG (Histogram of Oriented Gradients) features. And this paper adapted the contrast method which is generally using in the image process to improve the detection rate. Our experimental results show that a two-wheelers detection system based on proposed approach leads to higher detection accuracy, less computation, and similar detection time than traditional features.

New Approach to Two-wheeler Detection using Correlation Coefficient based on Histogram of Oriented Gradients

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.119-128
    • /
    • 2016
  • This study aims to suggest a new algorithm for detecting two-wheelers on road that have various shapes according to the viewing angle for vision based intelligent vehicles. This article describes a new approach to two-wheelers detection algorithm riding on people based on modified Histogram of Oriented Gradients (HOG) using correlation coefficient (CC). The CC between two local area variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using HOG which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the CC between the area of each cell and one of two-wheelers, can be extracted as the weighting factor in process for normalizing the modified HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Two-wheeler Detection System using Histogram of Oriented Gradients based on Local Correlation Coefficients and Curvature

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • Vulnerable road users such as bike, motorcycle, small automobiles, and etc. are easily attacked or threatened with bigger vehicles than them. So this paper suggests a new approach two-wheelers detection system riding on people based on modified histogram of oriented gradients (HOGs) which is weighted by curvature and local correlation coefficient. This correlation coefficient between two variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using the curvature of Gaussian and Histogram of Oriented Gradients (HOG) which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the correlation coefficient between the area of each cell and one of bike, can be used as the weighting factor in process for normalizing the HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. The experimental results validate the effectiveness of our proposed algorithm show higher than that of the traditional method and under challenging, such as various two-wheeler postures, complex background, and even conclusion.

Edge-based Method for Human Detection in an Image (영상 내 사람의 검출을 위한 에지 기반 방법)

  • Do, Yongtae;Ban, Jonghee
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.285-290
    • /
    • 2016
  • Human sensing is an important but challenging technology. Unlike other methods for sensing humans, a vision sensor has many advantages, and there has been active research in automatic human detection in camera images. The combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is currently one of the most successful methods in vision-based human detection. However, extracting HOG features from an image is computer intensive, and it is thus hard to employ the HOG method in real-time processing applications. This paper describes an efficient solution to this speed problem of the HOG method. Our method obtains edge information of an image and finds candidate regions where humans very likely exist based on the distribution pattern of the detected edge points. The HOG features are then extracted only from the candidate image regions. Since complex HOG processing is adaptively done by the guidance of the simpler edge detection step, human detection can be performed quickly. Experimental results show that the proposed method is effective in various images.

Modified HOG Feature Extraction for Pedestrian Tracking (동영상에서 보행자 추적을 위한 변형된 HOG 특징 추출에 관한 연구)

  • Kim, Hoi-Jun;Park, Young-Soo;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • In this paper, we proposed extracting modified Histogram of Oriented Gradients (HOG) features using background removal when tracking pedestrians in real time. HOG feature extraction has a problem of slow processing speed due to large computation amount. Background removal has been studied to improve computation reductions and tracking rate. Area removal was carried out using S and V channels in HSV color space to reduce feature extraction in unnecessary areas. The average S and V channels of the video were removed and the input video was totally dark, so that the object tracking may fail. Histogram equalization was performed to prevent this case. HOG features extracted from the removed region are reduced, and processing speed and tracking rates were improved by extracting clear HOG features. In this experiment, we experimented with videos with a large number of pedestrians or one pedestrian, complicated videos with backgrounds, and videos with severe tremors. Compared with the existing HOG-SVM method, the proposed method improved the processing speed by 41.84% and the error rate was reduced by 52.29%.