• Title/Summary/Keyword: Histogram equalized

Search Result 11, Processing Time 0.036 seconds

Regional Dynamic Range Histogram Equalization for Image Enhancement (국부영역의 동적범위 변화를 이용한 영상 개선 알고리즘)

  • Lee Eui-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.101-109
    • /
    • 2004
  • Image enhancement for Infrared imaging system is mainly based on the global histogram equalization. The global histogram equalization(GHE) is a method in which each pixel is equalized by using a whole histogram of an image. GHE is speedy and effective for real-time imaging system but its method fails to enhance the fine details. On the other hand, the basic local histogram equalization(LHE) method uses sliding a window and. the pixels under the window region are equalized over the whole output dynamic range. The LHE is adequate to enhance the fine details. But this method is computationally slow and noises are over-enhanced. So various local histogram equalization methods have been already presented to overcome these problems of LHE. In this paper, a new regional dynamic range histogram equalization (RDRHE) is presented. RDRHE improves the equalization quality while reducing the computational burden.

Histogram Equalized Eigen Co-occurrence Features for Color Image Classification (컬러이미지 검색을 위한 히스토그램 평활화 기반 고유 병발 특징에 관한 연구)

  • Yoon, TaeBok;Choi, YoungMee;Choo, MoonWon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.705-708
    • /
    • 2010
  • An eigen color co-occurrence approach is proposed that exploits the correlation between color channels to identify the degree of image similarity. This method is based on traditional co-occurrence matrix method and histogram equalization. On the purpose of feature extraction, eigen color co-occurrence matrices are computed for extracting the statistical relationships embedded in color images by applying Principal Component Analysis (PCA) on a set of color co-occurrence matrices, which are computed on the histogram equalized images. That eigen space is created with a set of orthogonal axes to gain the essential structures of color co-occurrence matrices, which is used to identify the degree of similarity to classify an input image to be tested for various purposes. In this paper RGB, Gaussian color space are compared with grayscale image in terms of PCA eigen features embedded in histogram equalized co-occurrence features. The experimental results are presented.

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

Contrast Image Enhancement Using Multi-Histogram Equalization

  • Phanthuna, Nattapong;cheevasuwit, Fusak
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • Mean separated histogram equalization in order to preserve the original mean brightness has been proposed. To provide the minimum mean brightness error after the histogram modification, the input image's histogram is successively divided by the factor of 2 until the mean brightness error is satisfied the defined threshold. Then each divided group or sub-histogram will be independently equalized based on the proportional input mean. To provide the overall minimum mean brightness error, each group will be controlled by adding some certain pixels from the adjacent grey level of the next group for giving its mean near by the corresponding the divided mean. However, it still exists some little error which will be put into the next adjacent group. By successive dividing the original histogram, we found that the absolute mean brightness error is gradually decreased when the number of group is increased. Therefore, the error threshold is assigned in order to automatically dividing the original histogram for obtaining the desired absolute mean brightness error (AMBE). This process will be applied to the color image by treating each color independently.

An Adaptive Contrast Enhancement Method by Histogram Compensation (히스토그램 보정을 통한 적응형 명암비 향상 방법)

  • Kang, Hyun-Woo;Hwang, Bo-Hyun;Yun, Jong-Ho;Cho, Tae-Kyung;Choi, Myung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.958-964
    • /
    • 2010
  • Histogram Equalization(HE) is one of the well known methods for contrast enhancement. but, it did not applied directly due to side effects such as significant change in brightness or washed out appearance. Many conventional method try to overcome this problem but they did not guarantee various image or depend on user define parameter. In this paper, an Adaptive histogram Compensated Histogram Equalization(ACHE) is proposed for contrast enhancement. ACHE has a parameter that based on median of input image. Histogram of input image is compensated according to parameter. And then finally compensated histogram is equalized. Experimental results show that proposed method suppresses side effects such as detail loss or washed out appearance. Moreover, parameter calculated automatically with low computation complexity. As a result, it could applies FPD directly.

Extraction of Features in key frames of News Video for Content-based Retrieval (내용 기반 검색을 위한 뉴스 비디오 키 프레임의 특징 정보 추출)

  • Jung, Yung-Eun;Lee, Dong-Seop;Jeon, Keun-Hwan;Lee, Yang-Weon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2294-2301
    • /
    • 1998
  • The aim of this paper is to extract features from each news scenes for example, symbol icon which can be distinct each broadcasting corp, icon and caption which are has feature and important information for the scene in respectively, In this paper, we propose extraction methods of caption that has important prohlem of news videos and it can be classified in three steps, First of al!, we converted that input images from video frame to YIQ color vector in first stage. And then, we divide input image into regions in clear hy using equalized color histogram of input image, In last, we extracts caption using edge histogram based on vertical and horizontal line, We also propose the method which can extract news icon in selected key frames by the difference of inter-histogram and can divide each scene by the extracted icon. In this paper, we used comparison method of edge histogram instead of complex methcxls based on color histogram or wavelet or moving objects, so we shorten computation through using simpler algorithm. and we shown good result of feature's extraction.

  • PDF

High-definition Video Enhancement Using Color Constancy Based on Scene Unit and Modified Histogram Equalization (장면단위 색채 항상성과 변형 히스토그램 평활화 방법을 이용한 고선명 동영상의 화질 향상 방법)

  • Cho, Dong-Chan;Kang, Hyung-Sub;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.368-379
    • /
    • 2010
  • As high-definition video is broadly used in various system such as broadcast system and digital camcorder the proper method in order to improve the quality of high-definition video is needed. In this paper, we propose an efficient method to improve color and contrast of high-definition video. In order to apply the image enhancement method to high-definition video, scale-down video of high-definition video is used and the parameter for image enhancement method is computed from small size video. To enhance the color of high-definition video, we apply color constancy method. First, we separate the video into several scenes by cut detection method. Then, we apply color constancy to each scene with same parameter. To improve the contrast of high-definition video, we use union of original image and histogram equalized image, and weight is calculated based on sorting of histogram bins. Finally, the performance of proposed method is demonstrated in experiment section.

Contrast Enhancement Using a Density based Sub-histogram Equalization Technique (밀도기반의 분할된 히스토그램 평활화를 통한 대비 향상 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.10-21
    • /
    • 2009
  • In order to enhance the contrast in the regions where the pixels have similar intensities, this paper presents a new histogram equalization scheme. Conventional global equalization schemes over-equalizes those regions so that too bright or dark pixels are resulted and local equalization schemes produce unexpected discontinuities at the boundaries of the blocks. The proposed algorithm segments the original histogram into sub-histograms with reference to brightness level and equalizes each sub-histogram with the limited extents of equalization considering its mean and variance. The final image is determined as the weighted sum of the equalized images obtained by using the sub-histogram equalizations. By limiting the maximum and minimum ranges of equalization operations on individual sub-histograms, the over-equalization effect is eliminated. Also the result image does not miss feature information in low density histogram region since the remaining these area is applied separating equalization. This paper includes how to determine the segmentation points in the histogram. The proposed algorithm has been tested with more than 100 images having various contrast in the images and the results are compared to the conventional approaches to show its superiority.

Enhancement of Image Contrast in Linacgram through Image Processing (전산처리를 통한 Linacgram의 화질개선)

  • Suh, Hyun-Suk;Shin, Hyun-Kyo;Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • Purpose : Conventional radiation therapy Portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low-cost image processing method. Materials and Methods : Chest linacgram was obtained by irradiating humanoid Phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. Results :The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30$\%$ of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment peformed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Conclusion :Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for evaluating the patient positioning error.

  • PDF

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.