• Title/Summary/Keyword: Histogram comparison

Search Result 192, Processing Time 0.026 seconds

Cut Detection of Video Data Using Color Histogram and Entropy (컬러 히스토그램과 엔트로피를 이용한 동영상 컷 검출)

  • 송현석;안강식;안명석;조석제
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.265-268
    • /
    • 2001
  • In content-based video data retrieval, the representative-frame is usually used. To do that, the skill of detection for scene change is needed. Generally the color histogram comparison is used, but sensitive to light variation and tends to miss the scene change of similar color histogram. This paper shows how to use both color histogram comparison and entropy to prevent the false-positive of scene change occurred by light variation. At the experiments, il is more powerful to light variation to use both color histogram comparison entropy than to use only color histogram comparison.

  • PDF

Automatic Histogram Specification Based on Fuzzy Membership Value for Image Enhancement (퍼지 멤버쉽 값을 이용한 히스토그램 명세화)

  • 황태호;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.317-320
    • /
    • 2002
  • In this paper, an automatic histogram specification method is proposed for image enhancement, Fuzzy membership value is adopted for the representation of image histogram. The desired PDF is automatically constructed by the fuzzy membership value. Fuzzy membership value is extracted from dark membership, bright membership function and original histogram. The effectual results are demonstrated by desired PDF which meet the image enhancement requirements. The performance and effectiveness are shown by the analysis and the resultant image in comparison with histogram equalization method.

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Content-Based Image Retrieval Using Adaptive Color Histogram

  • Yoo Gi-Hyoung;Park Jung-Man;You Kang-Soo;Yoo Seung-Sun;Kwak Hoon-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.949-954
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. Dey could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram(ACH) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that ACH's can give superior results to color histograms for image retrieval.

Automatic Contrast Enhancement by Transfer Function Modification

  • Bae, Tae Wuk;Ahn, Sang Ho;Altunbasak, Yucel
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2017
  • In this study, we propose an automatic contrast enhancement method based on transfer function modification (TFM) by histogram equalization. Previous histogram-based global contrast enhancement techniques employ histogram modification, whereas we propose a direct TFM technique that considers the mean brightness of an image during contrast enhancement. The mean point shifting method using a transfer function is proposed to preserve the mean brightness of an image. In addition, the linearization of transfer function technique, which has a histogram flattening effect, is designed to reduce visual artifacts. An attenuation factor is automatically determined using the maximum value of the probability density function in an image to control its rate of contrast. A new quantitative measurement method called sparsity of a histogram is proposed to obtain a better objective comparison relative to previous global contrast enhancement methods. According to our experimental results, we demonstrated the performance of our proposed method based on generalized measures and the newly proposed measurement.

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval Projection Maps

  • Kim, Won-Ill
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

  • PDF

A New Method for Color Feature Representation of Color Image in Content-Based Image Retrieval - 2D Projection Maps

  • Ha, Seok-Wun
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.123-127
    • /
    • 2004
  • The most popular technique for image retrieval in a heterogeneous collection of color images is the comparison of images based on their color histogram. The color histogram describes the distribution of colors in the color space of a color image. In the most image retrieval systems, the color histogram is used to compute similarities between the query image and all the images in a database. But, small changes in the resolution, scaling, and illumination may cause important modifications of the color histogram, and so two color images may be considered to be very different from each other even though they have completely related semantics. A new method of color feature representation based on the 3-dimensional RGB color map is proposed to improve the defects of the color histogram. The proposed method is based on the three 2-dimensional projection map evaluated by projecting the RGB color space on the RG, GB, and BR surfaces. The experimental results reveal that the proposed is less sensitive to small changes in the scene and that achieve higher retrieval performances than the traditional color histogram.

STD Defect Detection Algorithm by Using Cumulative Histogram in TFT-LCD Image (TFT-LCD 영상에서 누적히스토그램을 이용한 STD 결함검출 알고리즘)

  • Lee, SeungMin;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1288-1296
    • /
    • 2016
  • The reliable detection of the limited defect in TFT-LCD images is difficult due to the small intensity difference with the background. However, the proposed detection method reliably detects the limited defect by enhancing the TFT-LCD image based on the cumulative histogram and then detecting the defect through the mean and standard deviation of the enhanced image. Notably, an image enhancement using a cumulative histogram increases the intensity contrast between the background and the limited defect, which then allows defects to be detected by using the mean and standard deviation of the enhanced image. Furthermore, through the comparison with the histogram equalization, we confirm that the proposed algorithm suppresses the emphasis of the noise. Experimental comparative results using real TFT-LCD images and pseudo images show that the proposed method detects the limited defect more reliably than conventional methods.

Histogram Equalization Based Color Space Quantization for the Enhancement of Mean-Shift Tracking Algorithm (실시간 평균 이동 추적 알고리즘의 성능 개선을 위한 히스토그램 평활화 기반 색-공간 양자화 기법)

  • Choi, Jangwon;Choe, Yoonsik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.329-341
    • /
    • 2014
  • Kernel-based mean-shift object tracking has gained more interests nowadays, with the aid of its feasibility of reliable real-time implementation of object tracking. This algorithm calculates the best mean-shift vector based on the color histogram similarity between target model and target candidate models, where the color histograms are usually produced after uniform color-space quantization for the implementation of real-time tracker. However, when the image of target model has a reduced contrast, such uniform quantization produces the histogram model having large values only for a few histogram bins, resulting in a reduced accuracy of similarity comparison. To solve this problem, a non-uniform quantization algorithm has been proposed, but it is hard to apply to real-time tracking applications due to its high complexity. Therefore, this paper proposes a fast non-uniform color-space quantization method using the histogram equalization, providing an adjusted histogram distribution such that the bins of target model histogram have as many meaningful values as possible. Using the proposed method, the number of bins involved in similarity comparison has been increased, resulting in an enhanced accuracy of the proposed mean-shift tracker. Simulations with various test videos demonstrate the proposed algorithm provides similar or better tracking results to the previous non-uniform quantization scheme with significantly reduced computation complexity.

An Experiment on Image Restoration Applying the Cycle Generative Adversarial Network to Partial Occlusion Kompsat-3A Image

  • Won, Taeyeon;Eo, Yang Dam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.33-43
    • /
    • 2022
  • This study presents a method to restore an optical satellite image with distortion and occlusion due to fog, haze, and clouds to one that minimizes degradation factors by referring to the same type of peripheral image. Specifically, the time and cost of re-photographing were reduced by partially occluding a region. To maintain the original image's pixel value as much as possible and to maintain restored and unrestored area continuity, a simulation restoration technique modified with the Cycle Generative Adversarial Network (CycleGAN) method was developed. The accuracy of the simulated image was analyzed by comparing CycleGAN and histogram matching, as well as the pixel value distribution, with the original image. The results show that for Site 1 (out of three sites), the root mean square error and R2 of CycleGAN were 169.36 and 0.9917, respectively, showing lower errors than those for histogram matching (170.43 and 0.9896, respectively). Further, comparison of the mean and standard deviation values of images simulated by CycleGAN and histogram matching with the ground truth pixel values confirmed the CycleGAN methodology as being closer to the ground truth value. Even for the histogram distribution of the simulated images, CycleGAN was closer to the ground truth than histogram matching.