• Title/Summary/Keyword: Histogram Thresholding

Search Result 64, Processing Time 0.022 seconds

Night-Time Pedestrian Detection Techniques by Using Thermal Images (적외선 이미지 기반 야간 보행자 인식)

  • Lee, Jongkyu;Kang, Sun;Piao, Jingchun;Shin, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.83-86
    • /
    • 2012
  • 본 논문에서는 야간에 보행자인식의 성능 향상을 위한 효율적인 인식 방법을 제안한다. 이 논문은 야간에 차량에 비치 된 Thermal Camera를 이용하여 적외선 영상을 얻은 후, 적응적 thresholding, Histogram Equalization, Morphology Operation, Labelling, HOG및 SVM Training 방법을 사용하여 보행자의 인식율을 높이도록 하였다. 3830개의 training 영상을 사용하였으며 실험결과 우수한 인식 결과를 얻었다.

  • PDF

Computer Vision System for Analysis of Geometrical Characteristics of Agricultural Products and Microscopic Particles (I) -Algorithms for Automatic Threshold Selection- (농산물 및 미립자의 기하학적 특성 분석을 위한 컴퓨터 시각 시스템(I) -자동(自動) 문턱값 설정(設定) 알고리즘-)

  • Lee, J.W.;Noh, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.2
    • /
    • pp.132-142
    • /
    • 1992
  • The main objective of this paper is to evaluate and modify the existing algorithms for the automatic threshold selection. Four existing algorithms were evaluated quantitatively using test images of coffee droplets and an apple. The images had the different area ratio of the object to the image size, different average gray values between the object and the background, and different S/N ratio of the Gaussian noise. The result showed that Histogram Clustering Method and Maximum Entropy Method were better than Moment Preserving Method and Simple Image Statistic Method in automatic thresholding.

  • PDF

Automated Brain Region Extraction Method in Head MR Image Sets (머리 MR영상에서 자동화된 뇌영역 추출)

  • Cho, Dong-Uk;Kim, Tae-Woo;Shin, Seung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.1-15
    • /
    • 2002
  • A noel automated brain region extraction method in single channel MR images for visualization and analysis of a human brain is presented. The method generates a volume of brain masks by automatic thresholding using a dual curve fitting technique and by 3D morphological operations. The dual curve fitting can reduce an error in clue fitting to the histogram of MR images. The 3D morphological operations, including erosion, labeling of connected-components, max-feature operation, and dilation, are applied to the cubic volume of masks reconstructed from the thresholded Drain masks. This method can automatically extract a brain region in any displayed type of sequences, including extreme slices, of SPGR, T1-, T2-, and PD-weighted MR image data sets which are not required to contain the entire brain. In the experiments, the algorithm was applied to 20 sets of MR images and showed over 0.97 of similarity index in comparison with manual drawing.

  • PDF

Automatic Segmentation of Pulmonary Structures using Gray-level Information of Chest CT Images (흉부 CT 영상의 밝기값 정보를 사용한 폐구조물 자동 분할)

  • Yim, Ye-Ny;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.942-952
    • /
    • 2006
  • We propose an automatic segmentation method for identifying pulmonary structures using gray-level information of chest CT images. Our method consists of following five steps. First, to segment pulmonary structures based on the difference of gray-level value, we select the threshold using optimal thresholding. Second, we separate the thorax from the background air and then the lungs and airways from the thorax by applying the inverse operation of 2D region growing in chest CT images. To eliminate non-pulmonary structures which has similar intensities with the lungs, we use 3D connected component labeling. Third, we segment the trachea and left and right mainstem bronchi using 3D branch-based region growing in chest CT images. Fourth, we can obtain accurate lung boundaries by subtracting the result of third step from the result of second step. Finally, we select the threshold in accordance with histogram analysis and then segment radio-dense pulmonary vessels by applying gray-level thresholding to the result of the second step. To evaluate the accuracy of proposed method, we make a visual inspection of segmentation result of lungs, airways and pulmonary vessels. We compare the result of the conventional region growing with the result of proposed 3D branch-based region growing. Experimental results show that our proposed method extracts lung boundaries, airways, and pulmonary vessels automatically and accurately.

Segmentation of Lung and Lung Lobes in EBT Medical Images (EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할)

  • 김영희;이성기
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.276-292
    • /
    • 2004
  • In this paper. we present methods that extract lung regions from chest EBT(electron beam tomography) images then segment the extracted lung region into lung lobes. We use histogram based thresholding and mathematical morphology for extracting lung regions. For detecting pulmonary fissures, we use edge detector and knowledge-based search method. We suggest this edge detector, which uses adaptive filter scale, to work very well for real edge and insensitive for edge by noise. Our experiments showed about 95% accuracy or higher in extracting lung regions and about 5 pixel distance error in detecting pulmonary fissures.

Identifier Extraction of Shipping Container Images using Enhanced Binarization and Contour Tracking Algorithm (개선된 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨테이너의 식별자 추출)

  • Kim Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.462-466
    • /
    • 2005
  • The extraction and recognition of shipping container's identifier is difficult since the scale or the location of identifiers are not fixed-form and input images have some external noises. In this paper, based on these facts, first, edges are detected from input images using canny masking, and regions of container's Identifiers are extracted by applying horizontal and vertical histogram method to canny masked images. We use a fuzzy thresholding method to binaries the extracted container's identifier regions, and contour tracking algorithm to extract individual identifiers. In experimental results, we confirmed that the proposed method is superior In performance.

Image Segmentation Using Mathematical Morphology (수리형태학을 이용한 영상 분할)

  • Cho Sun-gil;Kang Hyunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1076-1082
    • /
    • 2005
  • Recently, there have been much efforts in the image segmentation using morphological approach. Among them, the watershed algorithm is one of powerful tools which can take advantages of both of the conventional edge-based segmentation and region-based segmentation. The concept of watershed is based on topographic analogy. But, its high sensitivity to noise yields a very large number of resulting segmented regions which leads to oversegmentation. So we suggest the restricted waterfall algorithm which reduce the oversegmentation by eliminate not only local minima but also local maxima. As a result, the restricted waterfall algorithm has a good segmented image than the other methods, and has a better binary image than the histogram thresholding method.

Automatic Edge Detection Method for Mobile Robot Application (이동로봇을 위한 영상의 자동 엣지 검출 방법)

  • Kim Dongsu;Kweon Inso;Lee Wangheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.423-428
    • /
    • 2005
  • This paper proposes a new edge detection method using a $3{\times}3$ ideal binary pattern and lookup table (LUT) for the mobile robot localization without any parameter adjustments. We take the mean of the pixels within the $3{\times}3$ block as a threshold by which the pixels are divided into two groups. The edge magnitude and orientation are calculated by taking the difference of average intensities of the two groups and by searching directional code in the LUT, respectively. And also the input image is not only partitioned into multiple groups according to their intensity similarities by the histogram, but also the threshold of each group is determined by fuzzy reasoning automatically. Finally, the edges are determined through non-maximum suppression using edge confidence measure and edge linking. Applying this edge detection method to the mobile robot localization using projective invariance of the cross ratio. we demonstrate the robustness of the proposed method to the illumination changes in a corridor environment.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Adaptive image enhancement technique considering visual perception property in digital chest radiography (시각특성을 고려한 디지털 흉부 X-선 영상의 적응적 향상기법)

  • 김종효;이충웅;민병구;한만청
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.160-171
    • /
    • 1994
  • The wide dynamic range and severely attenuated contrast in mediastinal area appearing in typical chest radiographs have often caused difficulties in effective visualization and diagnosis of lung diseases. This paper proposes a new adaptive image enhancement technique which potentially solves this problem and there by improves observer performance through image processing. In the proposed method image processing is applied to the chest radiograph with different processing parameters for the lung field and mediastinum adaptively since there are much differences in anatomical and imaging properties between these two regions. To achieve this the chest radiograph is divided into the lung and mediastinum by gray level thresholding using the cumulative histogram and the dynamic range compression and local contrast enhancement are carried out selectively in the mediastinal region. Thereafter a gray scale transformation is performed considering the JND(just noticeable difference) characteristic for effective image displa. The processed images showed apparenty improved contrast in mediastinum and maintained moderate brightness in the lung field. No artifact could be observed. In the visibility evaluation experiment with 5 radiologists the processed images with better visibility was observed for the 5 important anatomical structures in the thorax.

  • PDF