• Title/Summary/Keyword: Histogram Binarization

Search Result 52, Processing Time 0.021 seconds

A Binarization Technique using Histogram Matching for License Plate with a Shadow (그림자가 있는 자동차 번호판을 위한 히스토그램 매칭 기반의 이진화)

  • Kim, Jung Hun;Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.56-63
    • /
    • 2014
  • This paper deals with a binarization for plate number recognition. The binarization process converts an image into a binary image and plays an important role for automatically recognizing plate number. The rear license plate has often a shadowed image which causes erroneous binarized image due to non-uniform illumination. In this paper, a binarization method is proposed in which the shadow line is detected in a rear plate with a shadow. And then the histogram matching is conducted for the two image separated by the shadow line. After histogram matching, two images are joined and finally Otsu method is applied for the binarization. In the experiment, the proposed algorithm shows robust performance compared to the conventional method in the presence of estimation error in the shadow line.

A Study on Image Binarization using Intensity Information (밝기 정보를 이용한 영상 이진화에 관한 연구)

  • 김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.721-726
    • /
    • 2004
  • The image binarization is applied frequently as one part of the preprocessing phase for a variety of image processing techniques such as character recognition and image analysis, etc. The performance of binarization algorithms is determined by the selection of threshold value for binarization, and most of the previous binarization algorithms analyze the intensity distribution of the original images by using the histogram and determine the threshold value using the mean value of Intensity or the intensity value corresponding to the valley of the histogram. The previous algorithms could not get the proper threshold value in the case that doesn't show the bimodal characteristic in the intensity histogram or for the case that tries to separate the feature area from the original image. So, this paper proposed the novel algorithm for image binarization, which, first, segments the intensity range of grayscale images to several intervals and calculates mean value of intensity for each interval, and next, repeats the interval integration until getting the final threshold value. The interval integration of two neighborhood intervals calculates the ratio of the distances between mean value and adjacent boundary value of two intervals and determine as the threshold value of the new integrated interval the intensity value that divides the distance between mean values of two intervals according to the ratio. The experiment for performance evaluation of the proposed binarization algorithm showed that the proposed algorithm generates the more effective threshold value than the previous algorithms.

Enhanced Binarization Method using Fuzzy Membership Function (퍼지 소속 함수를 애용한 개선된 이진화 방법)

  • Kim Kwang Baek;Kim Young Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.67-72
    • /
    • 2005
  • Most of image binarization algorithms analyzes the intensity distribution using the histogram for the determination of threshold value. When the intensity difference between the foreground object and the background is great, the histogram shows the tendency to be bimodal and the selection of the histogram valley as the threshold value shows the good result. On the other side. when the intensity difference is not great and the histogram doesn't show the bimodal property, the histogram analysis doesn't support the selection of the proper threshold value. This Paper Proposed the novel binarization method that applies the fuzzy membership function to each color value on the RGB color model and, by using the operation results, separates the features having the great readability from the background. The proposed method prevents the loss of information incurred by the gray scale conversion by using the RGB color model and extracts effectively the readable features by using the fuzzy inference Compared with the traditional binarization methods, the proposed method is able to remove the majority of noise areas and show the improved results on the image of transport containers , etc.

  • PDF

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

Dynamic Adaptive Binarization Method Using Fuzzy Trapezoidal Type and Image Stepwise Segmentation (퍼지의 사다리꼴 타입과 영상 단계적 분할을 이용한 동적 적응적 이진화 방법)

  • Lee, Ho Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.670-675
    • /
    • 2022
  • This study proposes an improved binarization method to improve image recognition rate. The research goal is to minimize the information loss that occurs during the binarization process, and to transform the object of the original image that cannot be determined through the transformation process into an image that can be judged. The proposed method uses a stepwise segmentation method of an image and divides blocks using prime numbers. Also, within one block, a trapezoidal type of fuzzy is applied. The fuzzy trapezoid is binarized by dividing the brightness histogram area into three parts according to the degree of membership. As a result of the experiment, information loss was minimized in general images. In addition, it was found that the converted binarized image expressed the object better than the original image in the special image in which the brightness region was tilted to one side.

Automatic Defect Detection using Fuzzy Binarization and Brightness Contrast Stretching from Ceramic Images for Non-Destructive Testing (비파괴 검사를 위한 개선된 퍼지 이진화와 명암 대비 스트레칭을 이용한 세라믹 영상에서의 결함 영역 자동 검출)

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2121-2127
    • /
    • 2017
  • In this paper, we propose a computer vision based automatic defect detection method from ceramic image for non-destructive testing. From region of interest of the image, we apply brightness enhancing stretching algorithm first. One of the strength of our method is that it is designed to detect defects of images obtained from various thicknesses, that is, 8, 10, 11, 16, and 22 mm. In other cases we apply histogram based binarization algorithm. However, for 8 mm case, it may have false positive cases due to weak brightness contrast between defect and noise. Thus, we apply modified fuzzy binarization algorithm for 8 mm case. From the experiment, we verify that the proposed method shows stronger result than our previous study that used Blob labelling for all five thickness cases as expected.

Extraction of Intima and Adventitia using Fuzzy Binarization on IVUS Image (IVUS 영상에서 퍼지 이진화를 이용한 내막과 외막 추출)

  • Cho, Jae-Hun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.79-81
    • /
    • 2018
  • 혈관내 초음파(Intravascular Ultrasound, IVUS)는 혈관 내벽의 단면을 보여주는 검사 방법으로 관상 동맥 내의 내강, 죽상 경화반, 그리고 혈관벽의 변화에 관한 직접적이고 구체적인 정보를 제공한다. 본 논문에서는 IVUS 영상에서 내막과 외막을 추출하고 각 막의 지름을 자동적으로 추출하는 방법을 제안한다. 제안된 방법은 IVUS 영상에 Histogram Equalization 기법을 적용하여 명암 대비를 강조한 후에 퍼지 이진화 기법과 평균 이진화 기법을 각각 적용하여 내막과 외막을 추출하기 위해 이진화한다. 이진화된 내막과 외막의 각 영역 중에서 혈관내 초음파 영상 중심에서 가장 큰 영역의 정보를 이용하여 라벨링 기법을 적용하여 내막과 외막 영역을 추출하고 각 막의 지름을 계산한다. 제안된 방법을 IVUS 영상을 대상으로 실험한 결과, 내막과 외막의 지름이 비교적 정확히 추출되는 것을 실험을 통하여 확인하였다.

  • PDF

Color Segmentation of Vehicle License Plates in the RGB Color Space Using Color Component Binarization (RGB 색상 공간에서 색상 성분 이진화를 이용한차량 번호판 색상 분할)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2014
  • This paper proposes a new color segmentation method of vehicle license plates in the RGB color space. Firstly, the proposed method shifts the histogram of an input image rightwards and then stretches the image of the histogram slide. Secondly, the method separates each of the three RGB color components and performs the adaptive threshold processing with the three components, respectively. Finally, it combines the three components under the condition of making up a segment color and removes noises with the morphological processing. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using real vehicle images. The results show that the proposed algorithm is successful for most vehicle images. However, the method fails in some vehicles when the body and the license plate have the same color.

Recognition of Identifiers from Shipping Container Image by Using Fuzzy Binarization and ART2-based RBF Network

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.1-18
    • /
    • 2003
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.

  • PDF

Wire Recognition on the Chip Photo based on Histogram (칩 사진 상의 와이어 인식 방법)

  • Jhang, Kyoungson
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • Wire recognition is one of the important tasks in chip reverse engineering since connectivity comes from wires. Recognized wires are used to recover logical or functional representation of the corresponding circuit. Though manual recognition provides accurate results, it becomes impossible, as the number of wires is more than hundreds of thousands. Wires on a chip usually have specific intensity or color characteristics since they are made of specific materials. This paper proposes two stage wire recognition scheme; image binarization and then the process of determining whether regions in binary image are wires or not. We employ existing techniques for two processes. Since the second process requires the characteristics of wires, the users needs to select the typical wire region in the given image. The histogram characteristic of the selected region is used in calculating histogram similarity between the typical wire region and the other regions. The first experiment is to select the most appropriate binarization scheme for the second process. The second experiment on the second process compares three proposed methods employing histogram similarity of grayscale or HSV color since there have not been proposed any wire recognition method comparable by experiment. The best method shows more than 98% of true positive rate for 25 test examples.