• 제목/요약/키워드: Histidine

검색결과 983건 처리시간 0.022초

Fuculose-1-Phosphate Aldolase of Methanococcus jannaschii: Reaction of Histidine Residues Connected with Catalytic Activities

  • Lee, Bong-Hwan;Yu, Yeon-Gyu;Kim, Bok-Hwan;Choi, Jung-Do;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권5호
    • /
    • pp.838-844
    • /
    • 2001
  • The enzyme Fuc aldolase from Methanococcus jannaschii that catalyzes the aldol condensation of DHAP and L-lactaldehyde to give fuculose-1-phosphate was inactivated by DEP. The inactivation was pseudo first-order in the enzyme and DEP, which was biphasic. A pseudo second-order rate constant of 120$M^{-1}min^{-1}$ was obtained at pH 6.0 and $25{\circ}C$. Quantifying the increase in absorbance at 240nm showed that four histidine residues per subunit were modified during the nearly complete inactivation. The statistical analysis and the time course of the modification suggested that two or three histidine residues were essential for activity. The rate of inactivation was dependent on the pH, and the pH inactivation data implied the involvement of the amino acid residue with a $pK_a$ value of 5.7. Fuc aldolase was protected against DEP inactivation by DHAP, indicating that the histidine residues were located at the active site of Fuc aldolase. DL-Glyceraldehyde, as an alternative substrate to L-lactaldehyde, showed no specific protection for the Fuc aldolase.

  • PDF

$^1H$ NMR Study of Imidazole, L-Histidine, and Their Derivatives Coordinated to the Paramagnetic Undecatungstocobalto(II)silicate and -nickelo(II)silicate Anions

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.673-679
    • /
    • 1994
  • $^1H$ NMR spectra of imidazole, 2-and 4(5)-methylimidazole, histamine, L-histidine, L-histidine methyl ester, N${\alpha}$-acetyl-L-histidine, and L-carnosine coordinated to the paramagnetic undecatungstocobalto(II)silicate ($SiW_{11}Co$) and undecatungstonickelo(II)silicate ($SiW_{11}Ni$) anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines of the free ligand and the complexes have been observed separately at room temperature. Two different complexes are formed, depending upon which nitrogen atom of the imidazole ring is coordinated to the cobalt or nickel ion of $SiW_{11}M$. Thus the NMR spectrum of a $D_2O$ solution containing a ligand and $SiW_{11}M$ consists of three sets of lines originating from the free ligand and two complexes. All NMR lines of the $SiW_{11}Co$ complexes have been assigned unequivocally using the saturation transfer technique. The temperature dependence of some spectra are also reported. The NMR spectra of some complexes show that the internal rotation of the substituent on the imidazole ring is hampered by the heteropolyanion moiety even at room temperature.

Carnosine and Related Compounds Protect Against Copper-Induced Damage of Biomolecules

  • Lee, Beom-Jun;Lee, Yong-Soon;Kang, Kyung-Sun;Cho, Myung-Haing;Hendricks, Deloy G.
    • BMB Reports
    • /
    • 제32권4호
    • /
    • pp.350-357
    • /
    • 1999
  • At concentrations of 1 mM, the protective effects of carnosine and related compounds including anserine, homocarnosine, histidine, ${\beta}$-alanine were investigated against copper-catalyzed oxidative damage to deoxyribose, ascorbic acid, human serum albumin, liposome, and erythrocytes. Carnosine and anserine reduced Cu (II) to bathocuproine-reactive Cu (I) in a time- a and a dose-dependent manner while the others did not. Carnosine reduced 86% of $100\;{\mu}M$ Cu (II) in 60 min. Carnosine, homocarnosine, anserine, and histidine inhibited copper-catalyzed deoxyribose degradation by 75, 66, 65, and 45%, respectively. In the presence of $1\;{\mu}M$ Cu (II), carnosine and related compounds inhibited ascorbic acid oxidation by 55-85% after incubation for 20 min. In the presence of 0.15 mM ascorbic acid and 0.8 mM $H_2O_2$, carnosine, anserine, homocarnosine, and histidine inhibited copper-catalyzed oxidation of human serum albumin by 41, 21, 29, and 24%, respectively, as determined by carbonyl formation. These compounds also significantly inhibited copper-catalyzed liposomal lipid peroxidation as measured by malondialehyde and lipid hydroperoxides. Carnosine, anserine, homocarnosine, and histidine inhibited hemolysis of bovine erythrocytes induced by 0.1 mM Cu (II). These results suggest that histidine-containing dipeptides may play an important role in protecting against free radical-mediated tissue damage.

  • PDF

Corynebacterium glutamicum에서의 glutamate계 아미노산 생합성의 유전적 조절 (Genetic regulation for the biosynthesis of glutamate family in Corynebacterium glutamicum)

  • Kim In-Ju;Kyung Hee Min;Sae Bae Lee
    • 한국미생물·생명공학회지
    • /
    • 제14권5호
    • /
    • pp.427-432
    • /
    • 1986
  • The regulation of three ammonia assimilatory enzymes, GDH (glutamate dehydrogenase), GS (glutamine synthetase) and GOGAT (glutamate synthase), has been examined in C. glutamicum. Three kinds of arginine auxotrophs blocked in each step of arginine biosynthetic pathway from glutamate were selected as arg 5, arg 6, arg 8. Histidine and tryptophan auxotrophs were also selected because histidine and tryptophan repressed GS biosynthesis in E. coli. These strains were cultured on the media containing nitrogen-excess and limited conditions, to compare the specific activities of ${\alpha}$-ketoglutarate dehydrogenase(${\alpha}-KGDH$), GDH, GS, GOGAT from the cell-free extracts. These results showed that enzyme levels of ${\alpha}-KGDH$ and GDH from 3 kinds of arginine auxotrophs, histidine and tryptophan auxotrophs in nitrogen-excess condition and those of GS and GOGAT in nitrogen limited condition were increased compared with opposite condition. The tryptophan and histidine auxotrophs showed higher level of glutamate and glutamine than parental strains and other mutants. it is assumed that the higher levels of ${\alpha-KGDH}$ and GDH from mutants in nitrogen-excess condition promoted the accumulation of glutamate and glutamine in fermentation broth. The inhibition of GS activities by ADP suggested that GS is regulated by energy charge in C. glutamicum. The results with histidine, tryptophan, glycine, alanine, serine and GMP implied that a system of feedback inhibition were effective. The GDH, GS and GOGAT biosynthesis in culture broth was markedly repressed by the nature and kinds of available nitrogen sources such as tryptophan, proline, glycine, alanine, serine and tyrosine.

  • PDF

Identification of Essential Histidines in Cyclodextrin Glycosyltransferase Isoform 1 from Paenibacillus sp. A11

  • Kaulpiboon, Jarunee;Pongsawasdi, Piamsook
    • BMB Reports
    • /
    • 제36권4호
    • /
    • pp.409-416
    • /
    • 2003
  • The isoform 1 of cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Paenibacillus sp. A11 was purified by a preparative gel electrophoresis. The importance of histidine, tryptophan, tyrosine, and carboxylic amino acids for isoform 1 activity is suggested by the modification of the isoform 1 with various group-specific reagents. Activity loss, when incubated with diethylpyrocarbonate (DEP), a histidine modifying reagent, could be protected by adding 25 mM methyl-$\beta$-cyclodextrin substrate prior to the modification. Inactivation kinetics of isoform 1 with DEP resulted in second-order rate constants ($k_{inactivation}$) of $29.5\;M^{-1}s^{-1}$. The specificity of the DEP-modified reaction for the histidine residue was shown by the correlation between the loss of isoform activity and the increase in the absorbance at 246 nm of N-carbethoxyhistidine. The number of histidines that were modified by DEP in the absence and presence of a protective substrate was estimated from the increase in the absorbance using a specific extinction coefficient of N-carbethoxyhistidine of $3,200\;M^{-1}cm^{-1}$. It was discovered that methyl-$\beta$-CD protected per mole of isoform 1, two histidine residues from the modification by DEP. To localize essential histidines, the native, the DEP-modified, and the protected forms of isoform 1 were digested by trypsin. The resulting peptides were separated by HPLC. The peptides of interest were those with $R_t$ 11.34 and 40.93 min. The molecular masses of the two peptides were 5,732 and 2,540 daltons, respectively. When the data from the peptide analysis were checked with the sequence of CGTase, then His-140 and His-327 were identified as essential histidines in the active site of isoform 1.

가다랑어 자숙액에서 분리한 히스티딘 함유 저분자 펩타이드의 항산화 효과 (Antioxidant Effect of Histidine Containing Low Molecular Weight Peptide Isolated from Skipjack Boiled Extract)

  • 정효숙
    • 한국식품조리과학회지
    • /
    • 제23권2호통권98호
    • /
    • pp.221-226
    • /
    • 2007
  • This study was carried out to investigate the optimun conditions for the isolation of low molecular weight peptides containing histidine, and to evaluate the antioxidant effects of skipjack boiled extracts(SBE). The results are summarized as follows : L-histidine contents of the ordinary muscle and dark muscle extracts were $ 83.1{\pm}1.75{\mu}M/g\;and\;11.0{\pm}2.39\;{\mu}M/g$, respectively. The L-histidine level of the dark muscle was much lower than that of ordinary muscle in the SBE. The extracts were treated with alcalase and neutrase under different pH levels, temperatures, and times. The optimum hydrolysis conditions of SBE were pH 7.0 and a $60^{\circ}$C temperature for 2 hr in the batch reactor, which hydrolyzed 63% of the SBE. HPLC analysis showed a removing effect of the ultrafiltration permeate (UFP) to high molecular weight impurities in SBE. SBE and pure carnosine participated as inhibiting agents to, which was confirmed through the autoxidation processing of linoleic acid. UFP treatment improved the inhibiting ability of SBE to the autoxidation of linoleic acid. The reducing power of the UFP-treated ordinary muscle extracts were 10-fold higher than the dark muscle extracts, and 0.7-fold higher than 20 mM pure carnosine. The UFP-treated ordinary muscle extracts had greater reducing power activity than pure carnosine. The scavenging activities on DPPH radical of the different treated-SBE and pure carnosine were also investigated. Scavenging activities of the ordinary and dark muscle extracts and the pure carnosine were 90%, 70%, and 45%, respectively. In summary, Skipjack boiled extracts (SBE) demonstrated that low molecular weight peptides containing histidine are capable of inhibiting lipid oxidation. They also possessed effective abilities as free radical scavengers and reducing agents, and these activities may increase with increasing concentrations.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris

  • Huan huan Yan;Yi tong Shang;Li hong Wang;Xue qin Tian;Van-Tuan Tran;Li hua Yao;Bin Zeng;Zhi hong Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1178-1187
    • /
    • 2024
  • Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.

HpkA, a Histidine Protein Kinase Homolog, is Required for Fruiting Body Development in Myxococcus xanthus

  • Park, Sooyeon;Kim, Jihoon;Lee, Bongsoo;Zusman, David R;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.400-405
    • /
    • 2003
  • A gene (hpkA), encoding a histidine protein kinase homolog, has been identified in the upstream region of the espAB operon in Myxococcus xanthus. It encodes a 333 amino acid (35,952 Da) protein with a histidine protein kinase domain in the region from amino acid 90 to 317. Null mutations in the hpkA gene caused formation of loose irregular fruiting bodies, while wild-type strains developed tight hemispherical fruiting bodies under developmental conditions. Sporulation of the hpkA mutant was delayed by at least 12 h compared to that of the wild-type. It appeared that the hpkA mutation increased the expression of the espAB operon by more than 2-fold compared with the wild-type under developmental conditions. Expression of the hpkA gene was low under vegetative conditions, but was highly induced under developmental conditions.

Effects of Stirring and Addition of Chemical Compounds on Glycerolysis of Triglyceride in Reversed Micelles

  • Chang, Pahn-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.197-201
    • /
    • 1991
  • Glycerolysis of triolein by lipase from Chromobacterium viscosum lipase was studied batchwise in AOT-isooctane reversed micelles. The reaction mixture was extracted with chloroform and the content of triolein, 1, 2-diolein, 1, 3-diolein, 1-monoolein, and free fatty acid in the condensed chloroform solution was determined using high performance liquid chromatography (HPLC). The effect of agitation speed on the initial rate of conversion was examined. As the speed of agitation increased up to 700 rpm, the reaction rate increased. However, above 700 rpm, the rate approached maximum and did not increase that much. The glycerolysis activity and the stability of the enzyme were affected by stirring and addition of histidine or copper. Addition of histidine and copper increased the rates of glycerolysis but they are detrimental to the operational stability in reversed micelles.

  • PDF