• Title/Summary/Keyword: His-tagged

Search Result 94, Processing Time 0.025 seconds

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2405-2409
    • /
    • 2011
  • The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.

Cloning and Characterization of Cycloinulooligosaccharide Fructanotransferase (CFTase) from Bacillus polymyxa MGL21

  • Jeon, Sung-Jong;You, Dong-Ju;Kwon, Hyun-Ju;Shigenori Kanaya;Namio Kunihiro;Kim, Kwang-Hyeon;Kim, Young-Hee;Kim, Byung-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.921-928
    • /
    • 2002
  • Microorganism producing extracellular CFTase was isolated from soil and designated as Bacillus polymyxa MGL21. The gene encoding the CFTase (cft) from B. polymyxa MGL21 was cloned and sequenced. The ORF of the cf gene was composed of 3,999 nucleotides, encoding a protein (1,333 amino acids) with a predicted molecular mass of 149,375 Da. Sequence analysis indicated that CFTase was divided into five distinct regions. CFTase contained three regions of repeat sequences at the N-terminus and C-terminus. The endo-inulinase region of homology (ERH) of CFTase was similar to that of Pseudomonas mucidolens endo-inulinase ($50\%$ identity, 259 amino acids). Furthermore, CFTase possessed a highly conserved core region, which is considered to be functional for the hydrolysis reaction of inulin. The cft gene was expressed in a His-tagged form in Escherichia coli cells, and the His-tagged CFTase was purified to homogeneity. The optimal temperature and pH for CFTase activity were found to be $50^{\circ}C$ and 9.0, respectively. The enzyme activity was completely inhibited by 10 mM $Ag^+\;and\;Cu^2+$. Thin-layer chromatography analyses indicated that CFTase catalyzed not only the cyclization reaction ut also disproportionation and hydrolysis reactions as well.

ELISA detection of vivax malaria with recombinant multiple stage-specific antigens and its application to survey of residents in endemic areas

  • Kim, Sera;Ahn, Hye-Jin;Kim, Tong-Soo;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.203-207
    • /
    • 2003
  • An ELISA was developed for the diagnosis of vivax malaria using multiple stage-specific recombinant antigens of Plasmodium vivax. The DNA from the whole blood of a malaria patient was used as template to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1). Each amplified DNA fragment was inserted into pQE30 plasmid to induce the expression of His-tagged protein in Escherichia coli (M15 strain) by IPTG. His-tagged proteins were purified by Ni-NTA metal-affinity chromatography and used as antigens for ELISA with patient sera that were confirmed previously by blood smear examinations. When applied to patient sera, 122 (80.3%) out of 152 vivax malaria cases reacted to at least one antigen, while no reactions were observed with 128 uninfected serum samples. We applied this ELISA to the screening of 3,262 civilian residents in endemic regions near the DMZ, which resulted in 236 positively detected (7.2%) cases. This method can be applied to serological diagnosis and mass screening in endemic regions, or can be used as a safety test for transfusion blood in endemic areas.

Detection of the expression of a Bombyx mori Atypical Protein Kinase C in BmPLV-Infected Larval Midgut

  • Cao, Jian;He, Yuanqing;Li, Guohui;Chen, Keping;Kong, Jie;Wang, Fenghua;Shi, Jing;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.59-64
    • /
    • 2011
  • Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Das, Malabika;Ganguly, Tridib;Chattoraj, Partho;Chanda, Palas Kumar;Bandhu, Amitava;Lee, Chia Yen;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.740-748
    • /
    • 2007
  • To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.

Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase

  • Mondal, Rajkrishna;Ganguly, Tridib;Chanda, Palas K.;Bandhu, Amitava;Jana, Biswanath;Sau, Keya;Lee, Chia-Y.;Sau, Subrata
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.176-181
    • /
    • 2010
  • The primary sigma factor ($\sigma^{A}$) of Staphylococcus aureus, a potential drug target, was little investigated at the structural level. Using an N-terminal histidine-tagged $\sigma^{A}$ (His-$\sigma^{A}$), here we have demonstrated that it exits as a monomer in solution, possesses multiple domains, harbors primarily $\alpha$-helix and efficiently binds to a S. aureus promoter DNA in the presence of core RNA polymerase. While both N- and C-terminal ends of His-$\sigma^{A}$ are flexible in nature, two Trp residues in its DNA binding region are buried. Upon increasing the incubation temperature from 25$^{\circ}$ to 40$^{\circ}C$, $\sim$60% of the input His-$\sigma^{A}$ was cleaved by thermolysin. Aggregation of His-$\sigma^{A}$ was also initiated rapidly at 45$^{\circ}C$. From the equilibrium unfolding experiment, the Gibbs free energy of stabilization of His-$\sigma^{A}$ was estimated to be +0.70 kcal $mol^{-1}$. The data together suggest that primary sigma factor of S. aureus is an unstable protein. Core RNA polymerase however stabilized $\sigma^{A}$ appreciably.

Recombination and Expression of VP1 Gene of Infectious Pancreatic Necrosis Virus DRT Strain in a Baculovirus, Hyphantria cunea Nuclear Polyhedrosis Virus (전염성 췌장괴저바이러스 DRT Strain VP1유전자의 Baculovirus Hyphantria cunea Nuclear Polyhedrosis Virus에 재조합과 발현)

  • Lee, Hyung-Hoan;Chang, Jae-Hyeok;Chung, Hye-Kyung;Cha, Sung-Chul
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.239-255
    • /
    • 1997
  • Expression of the cDNA of the VP1 gene on the genome RNA B segment of infectious pancreatic necrosis virus (IPNV) DRT strain in E. coli and a recombinant baculovirus were carried out. The VP1 gene in the pMal-pol clone (Lee et al. 1995) was cleaved with XbaI and transferred into baculovirus transfer vector, pBacPAK9 and it was named pBacVP1 clone. The VP1 gene in the pBacVP1 clone was double-digested with SacI and PstI and then inserted just behind T5 phage promoter and the $6{\times}His$ region of the pQE-3D expression vector, and it was called pQEVPl. Again, the $6{\times}$His-tagged VP1 DNA fragment in the pQEVP1 was cleaved with EcoRI and transferred into the VP1 site of the pBacVP1, resulting pBacHis-VP1 recombinant. The pBacHis-VP1 DNA was cotransfected with LacZ-Hyphantria cunea nuclear polyhedrosis virus (LacZ-HcNPV) DNA digested with Bsu361 onto S. frugiperda cells to make a recombinant virus. One VP1-gene inserted recombinant virus was selected by plaque assay. The recombinant virus was named VP1-HcNPV-1. The $6{\times}$His-tagged VP1 protein produced by the pQEVP1 was purified with Ni-NTA resin chromatography and analyzed by SDS-PAGE and Western blot analysis. The molecular weight of the VP1 protein was 94 kDa. The recombinant virus, VP1-HcNPV-1 did not form polyhedral inclusion bodies and expressed VP1 protein with 95 kDa in the infected S. frugiperda cells, which was detected by Western blot. The titer of the VP1-HcNPV-1 in the first infected cells was $2.0{\times}10^5\;pfu/ml$ at 7 days postinfection.

  • PDF

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Molecular Characterization of a Nuclease Gene of Chlorella Virus SS-2

  • Park, Yun-Jung;Jung, Sang-Eun;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Sequence analysis of the Chlorella virus SS-2 revealed one putative nuclease gene that is 807 bp long and encodes a 31kDa protein. Multiple sequence alignment analysis reveals the presence of highly conserved PD-(D/E)XK residues in the encoded protein. The gene cloned into an expression vector was expressed as a His-tagged fusion protein in chaperone containing pKJE7 cells. The recombinant protein was purified using a His-Trap chelating HP column and used for functional analysis. Exonuclease activity of the SS-2 nuclease was detected when the DNA substrates, such as linear ssDNA, PCR amplicon, linear dsDNA with 5'-overhang ends, 3'-overhang ends, or blunt ends were used. Covalently closed circular DNA was also degraded by the SS-2 recombinant protein, suggesting that the SS-2 nuclease has an endonuclease activity. Stable activity of SS-2 nuclease was observed between $10^{\circ}C$ and $50^{\circ}C$. The optimum pH concentrations for the SS-2 nuclease were pH 6.0-8.5. Divalent ions inhibited the SS-2 nuclease activity.

Characterization of a Paenibacillus woosongensis ${\beta}$-Xylosidase/${\alpha}$-Arabinofuranosidase Produced by Recombinant Escherichia coli

  • Kim, Yeon-A;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1711-1716
    • /
    • 2010
  • A gene encoding the ${\beta}$-xylosidase/${\alpha}$-arabinofuranosidase (XylC) of Paenibacillus woosongensis was cloned into Escherichia coli. This xylC gene consisted of 1,425 nucleotides, encoding a polypeptide of 474 amino acid residues. The deduced amino acid sequence exhibited an 80% similarity with those of both Clostridium stercorarium ${\beta}$-xylosidase/${\alpha}$-N-arabinosidase and Bacillus cellulosilyticus ${\alpha}$-arabinofuranosidase, belonging to the glycosyl hydrolase family 43. The structural gene was subcloned with a C-terminal His-tag into a pET23a(+) expression vector. The His-tagged XylC, purified from a cell-free extract of a recombinant E. coli BL21(DE3) Codon Plus carrying a xylC gene by affinity chromatography, was active on para-nitrophenyl-${\alpha}$-arabinofuranoside (pNPA) as well as para-nitrophenyl-${\beta}$-xylopyranoside (pNPX). However, the enzymatic activities for the substrates were somewhat incongruously influenced by reaction pHs and temperatures. The enzyme was also affected by various chemicals at different levels. SDS (5 mM) inhibited the enzymatic activity for pNPX, while enhancing the enzymatic activity for pNPA. Enzyme activity was also found to be inhibited by addition of pentose or hexose. The Michaelis constant and maximum velocity of the purified enzyme were determined for hydrolysis of pNPX and pNPA, respectively.