• Title/Summary/Keyword: Hippocampal neurons

Search Result 189, Processing Time 0.032 seconds

Promotion of Synaptic Maturation by Deep Seawater in Cultured Rat Hippocampal Neurons (해양심층수의 해마신경세포 연접형성 촉진 효과)

  • Kim, Seong-Ho;Lee, Hyun-Sook;Shon, Yun-Hee;Nam, Kyung-Soo;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1479-1484
    • /
    • 2008
  • Deep seawater (DSW) refers to water extracted from the ocean, usually at depths of 200 meters or more, which is rich in inorganic materials and has attracted attention for various applications. We investigated the effects of the DSW on the synaptic maturation of cultured rat hippocampal neurons. Immunocytochemical examination of DIV21 showed that PSD-95, $\alpha$CaMKII, and synGAP$\alpha1$clusters were strengthened and coupling rates of SV2 and NR2B were significantly increased in neurons grown in the presence of H-800 and H-1000 DSW. Our results indicate that DSW promotes the formation of excitatory postsynaptic signal transduction complexes NRC/MASC and functional synapses.

The Downregulation of Somatic A-Type $K^+$ Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats

  • Kang, Moon-Seok;Yang, Yoon-Sil;Kim, Seon-Hee;Park, Joo-Min;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • The downregulation of A-type $K^+$ channels ($I_A$ channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As $I_A$ channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic $I_A$ channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of $I_A$ recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the $I_A$ peak, indicating the necessity of synaptic activation for the reduction of somatic $I_A$. This was again confirmed by glycine treatment, showing a significant reduction of the somatic $I_A$ peak. Additionally, the gating property of $I_A$ channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating $I_A$ channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

Deep Seawater Increases Dendritic Branches of Cultured Rat Hippocampal Neurons (해양심층수에 의한 해마신경세포 가지돌기 수의 증가)

  • Lee, Hyun-Sook;Nam, Kyung-Soo;Shon, Yun-Hee;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.897-901
    • /
    • 2008
  • Deep seawater (DSW; deep ocean water) is pure, rich in inorganic materials which have attracted attention for various applications. In this study we investigated the effects of the DSW upwelled from the East Sea, offshore Yang Yang (Korea) on the morphological differentiation of cultured rat hippocampal neurons, which were grown in the minimal essential medium containing 10% (v/v) fetal bovine serum and 25% (v/v) DSW with various hardness. DSW had no effect on initial morphological differentiation (17 hr post-plating). When observed on DIV3, 7, 14, and 17, low hardness (0 and 200) DSW reduced dendritic branching. However, dendritic branches within $80\;{\mu}m$ diameter from the center of soma nearly doubled in neurons grown in hardness 1,000 DSW-containing media. DSW with hardness 600 was more or less same as control groups. These results indicate that DSW with appropriate hardness ameliorates neuronal health.

Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus

  • Kim, Ju Hwan;Sohn, Uy Dong;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.277-289
    • /
    • 2018
  • The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.

Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus (Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

Inhibitory Effect of Lonicera japonica Thunb. Flower Buds against Glutamate-Induced Cytotoxicity in HT22 Hippocampal Neurons (HT22 신경세포에서 금은화 추출물에 의한 글루타메이트 유도 산화적 스트레스 및 세포사멸 억제 효과)

  • Jun, Chang-Hwan;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2021
  • Objectives : In this study, we investigated the neuroprotective effects of ethanol extract of Lonicera japonica flower buds (EELJ) on glutamate-induced neurotoxicity in mouse hippocampus-derived neuronal HT22 cells. Methods : After analyzing the cytoprotective effect of EELJ on glutamate in HT22 cells, the inhibitory effect of apoptosis was studied using flow cytometry. In order to analyze the antioxidant efficacy of EELJ, the levels of reactive oxygen species (ROS) and glutathione (GSH) were investigated, and the effects on the activities of superoxide dismutase (SOD) and catalase (CAT) were also analyzed. Furthermore, the effect of EELJ on the expression of apoptosis regulators such as Bax and Bcl-2 in glutamate-treated HT22 cells was investigated. Results : According the current results, pretreatment with EELJ significantly reduced glutamate-induced loss of cell viability and release of lactate dehydrogenase. EELJ also markedly attenuated glutamate-induced generation of intracellular ROS, which was associated with increased levels of GSH, and activity of SOD and CAT in glutamate-stimulated HT22 cells. In addition, EELJ was strikingly inhibited glutamate-induced apoptosis in HT22 cells. Furthermore, the expression of pro-apoptotic Bax was increased and the expression of anti-apoptotic Bcl-2 was decreased in glutamate-treated HT22 cells, while in the presence of EELJ, their expressions were maintained at the control levels. Conclusions : These findings indicate that EELJ protects glutamate-induced cytotoxicity in HT22 hippocampal neurons through antioxidant activity. Therefore, although identification of biologically active substances of EELJ and re-evaluation through animal experiments is necessary, this natural substance is a promising candidate for further research in preventing and treating oxidative stress-mediated neurodegenerative diseases.

Influence of Molarless Condition on the Hippocampal Formation in Mouse: a Histological Study (구치부 치관삭제가 생쥐 해마복합체에 미치는 영향에 관한 조직학적 연구)

  • Kim, Yong-Chul;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • The decrease of masticatory function caused by tooth loss leads to a decrease of cerebral blood flow volume resulting in impairment of cognitive function and learning memory disorder. However, the reduced mastication-mediated morphological alteration in the central nervous system (CNS) responsible for senile deficit of cognition, learning and memory has not been well documented. In this study, the effect of the loss of the molar teeth (molarless condition) on the hippocampal expression of glial fibrillary acidic protein (GFAP) protein was studied by immunohistochemical techniques. The results were as follows : 1. The molarless mice showed a lower density of pyramidal cells in the cornu ammonis 1 (CA1) and dentate gyrus (DG) region of the hippocampus than control mice. 2. Immunohistochemical analysis showed that the molarless condition enhanced the time-dependent increase in the cell density and hypertrophy of GFAP immunoreactivity in the CA1 region of the hippocampus. The molarless condition enhanced an time-dependent decrease in the number of neurons in the hippocampal formation and the time-dependent increase in the number and hypertrophy of GFAP-labeled cells in the same region. The data suggest a possible link between reduced mastication and histological changes in hippocampal formation that may be one risk factor for senile impairment of cognitive function and spatial learning memory.

The New Neurobiology of Depression (우울증의 새로운 신경생물학)

  • Kim, Yong Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.3-19
    • /
    • 2001
  • Recent basic and clinical studies demonstrate a major role for neural plasticity in the etiology and treatment of depression and stress-related illness. The neural plasticity is reflected both in the birth of new cell in the adult brain(neurogenesis) and the death of genetically healthy cells(apoptosis) in the response to the individual's interaction with the environment. The neural plasticity includes adaptations of intracellular signal transduction pathway and gene expression, as well as alterations in neuronal morphology and cell survival. At the cellular level, repeated stress causes shortening and debranching of dendrite in the CA3 region of hippocampus and suppress neurogenesis of dentate gyrus granule neurons. At the molecular level, both form of structural remodeling appear to be mediated by glucocorticoid hormone working in concert with glutamate and N-methyl-D-aspartate(NMDA) receptor, along with transmitters such as serotonin and GABA-benzodiazepine system. In addition, the decreased expression and reduced level of brain-derived neurotrophic factor(BDNF) could contribute the atrophy and decreased function of stress-vulnerable hippocampal neurons. It is also suggested that atrophy and death of neurons in the hippocampus, as well as prefrontal cortex and possibly other regions, could contribute to the pathophysiology of depression. Antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function via up-regulation of cyclic adenosine monophosphate response element-binding proteins(CREB) and BDNF. In this article, the molecular and cellular mechanisms that underlie stress, depression, and action of antidepressant are precisely discussed.

  • PDF

Post-ischemic Time-dependent Activity Changes of Hippocampal CA1 cells of the Mongolian Gerbils

  • Won, Moo-Ho;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.247-251
    • /
    • 2007
  • Changes of single unit activity of CA1 hippocampus region were investigated in anesthetized Mongolian gerbils for six days following transient ischemia. Ischemia was produced immediately before the implantation of micro-wire recording electrodes. In control animals receiving pseudo-ischemic surgery, neither spontaneous neuronal activities ($5.70{\pm}0.4Hz$) nor the number of recorded neurons per animal changed significantly for six days. Correlative firings among simultaneously recorded neurons were weak (correlation coefficient > 0.6) in the control animals. Animals subjected to ischemia exhibited a significant elevation of neural firing at post-ischemic 12 hr ($9.95{\pm}0.9Hz$) and day 1 ($8.48{\pm}0.8Hz$), but a significant depression of activity at post-ischemic day 6 ($1.84{\pm}0.3Hz$) when compared to the activities of non-ischemic control animal. Ischemia significantly (correlation coefficient > 0.6) increased correlative firings among simultaneously recorded neurons, which were prominent especially during post-ischemic days 1, 2 and 6. Although the numbers of spontaneously active neurons recorded from control group varied within normal range during the experimental period, those from ischemic group changed in post-ischemic time-dependent manner. Temporal changes of the number of cells recorded per animal between control group and ischemic group were also significantly different (p = 0.0084, t = 3.271, df = 10). Cresyl violet staining indicated significant loss of CA1 cells at post-ischemic day 7. Overall, we showed post-ischemic time-dependent, differential changes of three characteristics, including spontaneous activity, network relationship and excitability of CA1 cells, suggesting sustained neural functions. Thus, histological observation of CA1 cell death till post-ischemic day 7 may not represent actual neuronal death.