• Title/Summary/Keyword: Hip flexion

Search Result 312, Processing Time 0.029 seconds

The Correlations among the Balance the Knee and Ankle Muscle Power (발목, 무릎 근력과 균형의 상관관계)

  • Jeong, Young-June
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2010
  • Purpose : This study was investigate The correlations between the Balance and the knee muscle power and the ankle muscle power. Methods : This studied selected 9cases of the healthy persons. Each measure of muscle power used Bio-dex pro-3. Balance measure was used balance-meter the ability to measure Ant-post, lateral, overall balance. Result : 1. Knee flexor and extensor causes ankles that plantar flexion strength and high correlation r= .745, r= .825 have, Ankle dorsi flexor strength and a bit of correlation r= .249, r= .221) have. 2. Ankle plantar flexor strength and overall balance and correlation was the r= .204, Ankle dorsi flexor strength and lat. balance and correlation was the r= .314. 3. Knee extensor strength and overall balance and correlation was the r=.212.

  • PDF

Analysis of emergy comsumption for Hybrid Gait Orthosis (하이브리드 보행보조장치의 에너지 소모도 비교분석)

  • 강성재;류제청;김규석;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.814-817
    • /
    • 2004
  • It is a challenging task to make the paraplegic to walk with out the assist of the caregiver. So, we have developed various type of gait orthosis for paraplegic during the five years lately. The purpose of this study ultimately is energy consumption test of serveral type gait orthosis for developing the high efficiency gait orthosis. From the experimental results, the oxygen consumption rate were 6.9$\pm$3.3ml/kg in RGO gait, 5.3$\pm$1.3ml/kg in PGO, and 6.2$\pm$3ml/kg in HGO gait. The maximum hip flexion angle were 16$^{\circ}$ in RGO , 15$^{\circ}$ in PGO, and 47.5$^{\circ}$. in HGO. As a result It was found that. Hybrid Gait Orthosis need high energy consumption more than PGO for walking, but it is small weight and strengthened muscle.

  • PDF

Neuromuscular difference between normal subjects and low-back pain patients: Neural excitation measured by dynamic electromyography (정상인과 요통환자의 생체역학적 차이에 관한 연구:신경근육계의 동적 근전도 반응형태를 중심으로)

  • 김정룡
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 1995
  • Neuromuscular difference between normal subjects and low-back pain patients has been identified in terms of neural excitation signal measured by Electromyography (EMG) under the dynamic flexion/extension trunk motion. Ten healthy subjects and ten low-back pain patients were recruited for this study. New parameters and normalization technique were introduced to quantify the muscle excitation pattern among the flexor-extensor pairs of muscles : rectus abdominis (RA)-erector spinae (ES at L1 and L5 level), external oblique (EO)-internal oblique (IO), rectus femoris (quadricep : QUD)-biceps femoris( hamstring : HAM), and tibialis anterior (TA)-gastrocnemius (GAS). Results indicated that the temporal EMG pattern such as peak timing difference between the hip flexor (QUD) and extensor (HAM) and the duration of coexcitation between ES at L5 and RA muscle pairs showed a statistically significant difference between normal subjects and low-back pain patients. Improtantly, this study presented a new technique to identify the dynamic muscle excitation pattern that canb be least affected by EMG-length-velocity relationship. Further study can performed to validate this method for clinical application to quantitatively identify the low-back pain patients in the future.

  • PDF

Overview of Periodic Limb Movements During Sleep (주기성 사지운동증의 개관)

  • Cyn, Jae-Gong
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Periodic leg movements during sleep (PLMS) are best described as repetitive stereotypical movements of the lower extremities characterized by dorsiflexion of the ankle, dorsiflexion of the toes and a partial flexion of the knee and sometimes the hip. The prevalence of PLMS is about 5-11% in adults and is predicted much higher than previously surveyed. They are also frequently found in various sleep disorders, several disorders not primarily affecting sleep, and patients taking psychiatric medications. Although they are rarely found in children, they are common findings in children referred to a pediatric sleep laboratory. The pathophysiology is strongly associated with decline of central dopaminergic function and closely related to arousal system during sleep. Benzodiazepines, levodopa, dopamine agonists and opioids are generally recommended for treatment but more controlled studies on the effectiveness are needed.

  • PDF

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.

Biomechanical Analysis of Lower Extremity Joints According to Landing Types during Maximum Vertical Jump after Jump Landing in Youth Sports Athletes (유소년 스포츠 선수들의 점프착지 후 수직점프 동작 시 착지 유형에 따른 하지관절의 운동역학적 분석)

  • Jiho Park;Joo Nyeon Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.3
    • /
    • pp.110-117
    • /
    • 2023
  • Objective: The purpose of this study was to find out kinematic and kinetic differences the lower extremity joint according to the landing type during vertical jump movement after jump landing, and to present an efficient landing method to reduce the incidence of injury in youth players. Method: Total of 24 Youth players under Korean Sport and Olympic Committee, who used either heel contact landing (HCG) or toe contact landing (TCG) participated in this study (HCG (12): CG height: 168.7 ± 9.7 cm, weight: 60.9 ± 11.6 kg, age: 14.1 ± 0.9 yrs., career: 4.3 ± 2.9 yrs., TCG height: 174.8 ± 4.9 cm, weight: 66.9 ± 9.9 kg, age 13.9 ± 0.8 yrs., career: 4.7 ± 2.0 yrs.). Participants were asked to perform jump landing consecutively followed by vertical jump. A 3-dimensional motion analysis with 19 infrared cameras and 2 force plates was performed in this study. To find out the significance between two landing styles independent t-test was performed and significance level was set at .05. Results: HCG showed a significantly higher dorsi flexion, extension and flexion angle at ankle, knee and hip joints, respectively compared with those of TCG (p<.05). Also, HCG revealed reduced RoM at ankle joint while it showed increased RoM at knee joint compared to TCG (p<.05). In addition, HGC showed greater peak force, a loading rate, and impulse than those of TCG (p<.05). Finally, greater planta flexion moment was revealed in TCG compared to HCG at ankle joint. For the knee joint HCG showed extension and flexion moment in E1 and E2, respectively, while TCG showed opposite results. Conclusion: Compared to toe contact landing, the heel contact landing is not expected to have an advantage in terms of absorbing and dispersing the impact of contact with the ground to the joint. If these movements continuously used, performance may deteriorate, including injuries, so it is believed that education on safe landing methods is needed for young athletes whose musculoskeletal growth is not fully mature.

The Kinematical Analysis of Straddle Jump to Push up Motion on Sports Aerobics (스포츠 에어로빅스 Straddle Jump to Push up 동작의 운동학적 분석)

  • Kim, Cha-Nam
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.77-90
    • /
    • 2002
  • This study serves the purpose of understanding about correct jump and landing motion through Kinematical Analysis of Straddle Jump to Push up Motion at target by four elite sports aerobics athletes have more than four years career. And further more that make good assistance for coaches effective guidance through an offer basic data and correct diagnosis, evaluate of motions. It was picture-taked by two-video camera for Straddle Jump to Push up Motions. Camera speeds are 60 frame/sec. There are Kinematical Variation elements for analysis, the displacement of COG, each angle displacement left/right of shoulder-joint, each angle displacement left/right of knee-joint and each speed left/right of tip of the toes. Every each person accomplished severaly 3 times and we have acquired this conclusion. The conclusions were as follows; 1. Each situation for displacement of COG showed low height of COG by phase 1, 4, 5(79.05${\pm}9.07,\;46.41{\pm}3.65,\;18.66{\pm}0.54cm$) and It showed high height of COG by phase 2, 3($120.80{\pm}6.13,\;148.12{\pm}9.19cm$). 2. Each displacement left, right of shoulder-joint flexion by phase 1($91.07{\pm}8.30,\;90.77{\pm}5.72$deg/sec)and It showed maximal extension angles by phase 2($102.48{\pm}10.00,\;102.39{\pm}10.51$deg/sec). in part of phase 3, left of shoulder-joint angle($94.43{\pm}4.12$deg/sec) showed flexion phase 1, the other right shoulder-joint angle(88.38${\pm}$4.98deg/sec) showed more a little lower than phase 1, in last phase that showed most low by phase 4($70.58{\pm}13.72,\;54.24{\pm}11.58$deg/sec). 3. Each displacement left, right of hip joint showed maximal extent conditions by phase 2, 3($160.35{\pm}22.68,\;1534.77{\pm}5.40$deg/sec, $150.04{\pm}12.79,\;145.54{\pm}13.00$deg/sec) beside, ankle-joint showed minimal angle by phase 1, 4($93.59{\pm}18.92,\;85.37{\pm}13.23$deg/sec, $66.60{\pm}15.77,\;80.60{\pm}16.57$deg/sec). 4. Each displacement left, right of hip joint showed maximal extent conditions by phase 2($157.15{\pm}9.13,\;163.52{\pm}8.18$deg/sec), and right of hip joint showed minimal angle by phase 3($110.87{\pm}13.81,\;77.53{\pm}8.95$deg/sec) It showed alike condition of low angle by phase 1, 4($91.04{\pm}2.31,\;96.26{\pm}2.20$deg/sec). 5. Each displacement left, right of knee-joint showed maximal extent conditions by phase 1, 3, 4($173.46{\pm}2.95,\;171.51{\pm}5.44$deg/sec, $172.24{\pm}4.49,\;171.26{\pm}0.65$deg/sec, $162.78{\pm}2.13,\;164.10{\pm}5.97$deg/sec) but It showed flexion only left of knee-joint by phase 2($164.45{\pm}7.51,\;159.38{\pm}3.48$deg/sec). 6. Each speed left, right of the tip of the toes showed most fastest when someone jumped with lift up leges by phase 1, 2($321.32{\pm}67.91,\;316.90{\pm}41.97$cm/sec, $410.06{\pm}153.06,\;399.77{\pm}189.34$cm/sec), It showed more less speed than phase 1,2 by phase 3($169.74{\pm}67.17,\;150.00{\pm}63.80$cm/sec) and It showed most slow speed than phase 1,2,3 by phase 4($87.22{\pm}34.90,\;85.72{\pm}52.23$cm/sec).

Effects of the PNF Leg Pattern according to Chain Exercise Postures and Resistance Intensity on the Contralateral Leg's Muscle Activity (사슬운동자세와 저항강도에 따른 PNF 다리패턴이 반대측 다리의 근활성도에 미치는 영향)

  • Seok, Him;Yoon, Sung-Young;Heo, Jae-Seok;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.423-433
    • /
    • 2021
  • Purpose: Proprioceptive neuromuscular facilitation (PNF) is a method for promoting functional movements by facilitating neuromuscular responses through the stimulation of proprioceptors in the body using spiral and diagonal patterns. Irradiation, a basic principle of PNF, is a phenomenon in which the muscle activity of a body part caused by resistance is increased or spread into muscles in other parts via their connected muscles. Resistance training can be divided by body alignment into closed and open chain exercises. Methods: In this study, 19 healthy men in their 20s and 30s were selected as subjects. They performed PNF hip flexion, abduction, and internal rotation motions on their dominant side in an open chain exercise posture in which the nondominant sole was away from the wall, and in a closed chain exercise posture in which the sole was fixed to the wall. The nondominant leg's muscle activity was measured while resistance was maintained with applied pressure at 0%, 25%, 50%, 75%, and 100% of the maximum muscle strength in the last range of motions. A two-way analysis of variance (ANOVA) was conducted for a comparative analysis of the contralateral leg's muscle activity according to the chain exercise postures and the intensity of resistance intensity during PNF hip flexion, abduction, and internal rotation. In addition, an independent sample T-test was conducted for a comparative analysis of each chain exercise posture according to the intensity of resistance. A one-way ANOVA and a Scheffe post-hoc test were also performed to analyze the contralateral leg's muscle activity according to the intensity of resistance in the closed and open chain exercise postures. Results: Results of the two-way ANOVA found that the gluteus medius and the biceps femoris had statistically significant differences in both the chain exercise postures and resistance intensity (p<0.05), and that the vastus medialis and the gastrocnemius did not exhibit statistically significant differences in the chain exercise postures (p>0.05) but showed statistically significant differences in resistance intensity (p<0.05). As a result of the independent sample T-test, the application of the PNF hip flexion-abduction-internal rotation pattern led to a statistically significant difference in the contralateral gluteus medius during the closed chain exercise posture (p<0.05). According to the results of the one-way ANOVA and the Scheffe post-analysis, statistically significant differences were observed in the gluteus medius at 50%, biceps femoris at 75%, vastus medialis at 100%, and gastrocnemius at 100% during the closed chain exercise posture based on a resistance intensity of 0% (p<0.05). In the open chain exercise posture, statistically significant differences were found in the gluteus medius at 50%, biceps femoris at 50%, and vastus medialis at 75% based on the resistance intensity of 0% (p<0.05). In the same posture, there was no significant difference in the gastrocnemius's resistance intensity (p>0.05). Conclusion: When the PNF leg pattern is applied, each muscle requires effective chain exercise postures and resistance intensity to generate the contralateral leg muscle's irradiation.

The Effect of Elastic Theraband Exercise Based of PNF L/E Pattern on the Gait of the Chronic Hemiplegic Patients (고유수용성 신경근 촉진법 하지 패턴에 기초한 탄력밴드 훈련이 만성 편마비 환자의 보행에 미치는 영향)

  • Kim, Jwa-Jun;Kim, Gwang-Il;Kim, Do-Whan;Sung, Yong-In;Shin, Seung-Je
    • PNF and Movement
    • /
    • v.5 no.2
    • /
    • pp.47-54
    • /
    • 2007
  • Purpose : The purpose of this study were to determine the effect of a Elastic Theraband Exercise Based of PNF L/E pattern on the gait of the chronic Hemiplegic Patients. Methods : We selected the 20 chronic Hemiplegic Patients not given treatment now and divided them into two groups of both 10 Elastic Theraband group and 10 Self Exercise. The first group went through a Elastic Theraband Exercise Based of PNF L/E pattern 30 minutes a day, 5 times a week, for 6 weeks. Exercise used to blue elastic band which 2 patterns of PNF by 1) hip extension - abduction - internal rotation with knee extension. 2) hip flexion - adduction - external rotation with knee flexion. The latter group experienced Self Exercise, 30 minutes a day, 5 times a week, for 6 weeks. Firstly, we measured the absolute improvement of gait velocity(m/s), cadence(steps/min) among walking characters. Secondly, we measured the functional walking ability such as Functional Ambulatory Category(FAC, score out of 5), Modified Motor Assesment Scale(MMAS, score out of 6). Data analysis was performed with using SPSS 12.0 win program. The descriptive analysis was used to obtain average and standard deviation. The independent t-test and the paired t-test were used to compare both the groups about pre and post training test. Treatment effects were established by pre and post assessment. Subjects tolerated the training well without side-effects. Therefore, the results of this study were as follows; Results : 1. There was a more significant improvement of Gait velocity(0.12m/s) Elastic Theraband group(p<.05). 2. There was a more significant improvement of cadence(9.40steps/min) Elastic Theraband group(p<.05). Conclusion : As we can see from above, the findings suggest that Elastic Theraband may be more effective than the Self Exercise for improving some gait parameters such as Gait velocity and Cadency. This conclusion also suggest that Elstic Theraband is more effective for the improvement of gait of chronic Hemiplegic Patients.

  • PDF

The Effect of Human Appendage Muscle Strength on Increase in Vertical Dimension from Intercuspal Position of Mandible (교두감합위로부터 출발한 수직교합고경의 단계적 증가가 사지 근력에 미치는 영향에 관한 연구)

  • Hong, Dong-Hee;Lee, Sung-Bok;Choi, Dae-Kyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.169-183
    • /
    • 2003
  • According to our recent investigation that the increase in the occlusal vertical dimension made the appendage muscle strength got higher, the occlusal appliances were made by increasing the occlusal vertical dimension "from the centric relation" position of the mandible. In this experiment, the authors tried to study the change in the appendage muscle strength due to increase in occlusal vertical dimension from intercuspal position(ICP) of mandible with the same subjects and manner as the former experiment. For this study, ten male athletes in a mean age of 23 year who were joined the former study were selected. All the subjects had a complete or almost complete set of natural teeth and reported no subjective symptoms of temporomandibular disorders. Upper and lower casts were mounted on the semi-adjustable articulator at the intercuspal position and a point was marked on the attached gingival area between the right canine and the right 1st. premolar in each upper and lower cast. From the points, the occlusal vertical dimension was increased by 2mm, 3.5mm and 5mm, and then each 10 maxillary type occlusal splint at each 3-increased position were fabricated with heat curing clear acrylic resin. Including the intercuspal position, the 3 kinds of occlusal splints were placed on the subjects individually, and then isokinetic muscle strength on 7 parts of the human appendage which are shoulder, knee, ankle, wrist, forearm, elbow and hip was measured with the CYBEX 6000 SYSTEM (Lumex, NewYork, USA). The results were as follows: The highest mean value in muscular strength was shown at the position of 2mm-increased vertical dimension. The muscle strength during internal/external rotation of shoulder and knee, plantarflexion of ankle, flexion of elbow, and flexion and extension of hip at the increased occlusal vertical dimension position were significantly higher than them at the intercuspal position (p<0.05). Only in view of the increase in the appendage muscle strength, regardless of the way of making the occlusal splints by elevating the occlusal vertical dimension from the centric relation position or intercuspal position, the occlusal splints had an effect on the increase of isokinetic muscle strength at the occlusal vertical dimension which increased within the proper range on the habitual arc of closure.