• Title/Summary/Keyword: Hip extension torque

Search Result 16, Processing Time 0.022 seconds

Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults (태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석)

  • Jo, Gye-Hun;Oh, Jeong-Hoon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

Effect of High-frequency Diathermy on Hamstring Tightness

  • Kim, Ye Jin;Park, Joo-Hee;Kim, Ji-hyun;Moon, Gyeong Ah;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2021
  • Background: The hamstring is a muscle that crosses two joints, that is the hip and knee, and its flexibility is an important indicator of physical health in its role in many activities of daily living such as sitting, walking, and running. Limited range of motion (ROM) due to hamstring tightness is strongly related to back pain and malfunction of the hip joint. High-frequency diathermy (HFD) therapy is known to be effective in relaxing the muscle and increasing ROM. Objects: To investigate the effects of HFD on active knee extension ROM and hamstring tone and stiffness in participants with hamstring tightness. Methods: Twenty-four participants with hamstring tightness were recruited, and the operational definition of hamstring tightness in this study was active knee extension ROM of below 160° at 90° hip flexion in the supine position. HFD was applied to the hamstring for 15 minutes using the WINBACK device. All participants were examined before and after the intervention, and the results were analyzed using a paired t-test. The outcome measures included knee extension ROM, the viscoelastic property of the hamstring, and peak torque for passive knee extension. Results: The active knee extension ROM significantly increased from 138.8° ± 9.9° (mean ± standard deviation) to 143.9° ± 10.4° after the intervention (p < 0.05), while viscoelastic property of the hamstring significantly decreased (p < 0.05). Also, the peak torque for knee extension significantly decreased (p < 0.05). Conclusion: Application of HFD for 15 minutes to tight hamstrings immediately improves the active ROM and reduces the tone, stiffness, and elasticity of the muscle. However, further experiments are required to examine the long-term effects of HFD on hamstring tightness including pain reduction, postural improvement around the pelvis and lower extremities, and enhanced functional movement.

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.

The Effects of Strength Training on Knee Joint Torque During Walking in an Adolescent With Down Syndrome: A Single Case Study (근력훈련이 다운증후군 청년의 무릎 관절 토크에 미치는 영향)

  • Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • The purpose of this study was to investigate the effects of strength training on knee joint torque during walking in an adolescent with trisomy-21 Down syndrome. One adolescent with Down syndrome and one normal child participated in this study. Strength training consisted of eight exercises: squat, hamstring curl, hip adduction, hip abduction, knee extension, toe raise, sit-ups, and hyperextension of the waist. The participant with Down syndrome was participated in strength training for 12 weeks, three times a week, three sets, 10-15 RM; resistance was adjusted according to the principle of progressive overload. To measure the effect of strength training, isokinetic strength variables and knee joint torques were measured before training and after 12 weeks of training. The participant with Down syndrome had some abnormalities in controlling knee motion during walking due to muscle hypotonia, ligament laxity, and weakness of muscles. Post-training isokinetic strength increased compared to pre-training measurements. Knee range of motion were increased after strength training. Strength training did not affect ad/adduction and in/exteranl moments but did have an effect on flexor/extensor moment and timing.

Development of Walking Assistant Controller for Patients with Weakness in Cardiopulmonary System (심폐기능 허약자를 위한 보행보조장치 제어기 개발)

  • Kang, S.J.;Kim, G.S.;P, S.H.;Mun, M.S.;Sei, S.W.;Kim, J.K.;Ryu, J.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Case of patients with weakness in cardiopulmonary system, other ambulatory function is normal, but oxygen supply function is problem. So they need reduce energy consumption for gait by assistance system. In this study, we designed and developed walking assistant device which helps flexion and extension of hip joint for cardiopulmonary patients. There are two motors, each at the left and right side of pelvis, providing torque to the hip joint. The target angle of the flexion and extension in the hip joint is set according to the normal gait. As a result, reduction of energy consumption was 14.8% by gait assistive device.

The analysis of biomechanical gender difference of K-Pop dance lower body movement (K-Pop 댄스 하지동작의 생체역학적 남녀 차이 분석)

  • Jang, Young-Kwan;Hong, Su-Yeon;Ki, Jae-sug;Jang, In-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.95-101
    • /
    • 2017
  • The purpose of this study was to investigate the biomechanical of K-Pop dance movement. The study was conducted on 15 male and 15 female subjects in 20-30 age groups. And they choose 150 K-Pop dance choreographies in the top 10 ranking of the main charts. We analyzed the RoM, joint moment and impulse force of the highlight movements. First, During the K-Pop dance motion, the usage of knee joints are more than the hip joints and the ankle joints, and female dancers has a larger range of motion than the male dancers. Second, male dancer uses more than female dancers when they compared the load of male dancers and female dancers. In particular, flexion and extension of the hip joints are mostly used in this study. Third, the impulse force of male dancers was greater than of female dancers, but it was statistically insignificant, this is equal to the impulse on walking. In conclusion, Female dancers use more range of motion than male dancers, but male dancer choreography requires greater torque, which can strain joints. Most choreographic exercises involve movements such as hip joint, knee joint, flexion of ankle joint, extension, rotation, and jumping.

Effects of Landing Height and Knee Joint Muscle Fatigue on Movement of the Lower Extremity during Cutting After Landing (착지 높이와 무릎관절 근육 피로가 착지 후 방향 전환 동작 시 하지관절의 움직임에 미치는 영향)

  • Kim, You-Kyung;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of landing height and knee joint muscle fatigue on the movement of the lower extremity during cutting after landing. Method : Subjects included 29 adults (age: $20.83{\pm}1.56years$, height: $172.42{\pm}9.51cm$, weight: $65.07{\pm}10.18kg$). The subjects were asked to stand on their dominant lower limb on jump stands that were 30 and 40 cm in height and jump from each stand to land with the dominant lower limb on a force plate making a side step cutting move at a $45^{\circ}$ angle with the non-dominant lower limb. The fatigue level at 30% of the knee extension peak torque using an isokinetic dynamometer. Results : The results showed that the difference of landing height increased maximum range of motion and angular velocity of hip, knee, and ankle joints in the sagittal plane, and in the angular velocity of motion of the hip joint in the sagittal plane. The maximum range of motion of the knee joint in the sagittal plane and the frontal plane decreased on landing from both heights after the fatigue exercise. The angular velocity of the hip joint in the sagittal plane, and the maximum range of motion of the hip joint in the transverse plane decreased for both landing heights after the fatigue exercise. The angular velocity of the hip joint in the frontal plane decreased for the 30 cm landing height after the fatigue exercise. On the other hand, the angular velocity and maximum range of motion of the ankle joint in the sagittal plane for both landing heights, and the angular velocity and maximum range of motion of the ankle joint in the frontal plane increased on landing from the 40 cm height after the fatigue exercise. Conclusion : Different landing heights of 30 and 40 cm and 30% fatigue of peak torque of knee extensor found a forefoot and stiff landing strategy, when cutting after landing. These results might be due to decline in the shock absorption capability of the knee joint and the movement capability related to cutting while increasing the contribution of the ankle joint, which may cause increased ankle joint injuries.

The Change of Isokinetic Trunk Muscle Strength after Reduction of Body Weight (비만치료 전후 체간 근력 변화에 관한 연구)

  • Hong, Seo-Young;Park, Ji-Hyun;Lee, Han-Kil;Kim, Hyun-Soo
    • Journal of Haehwa Medicine
    • /
    • v.18 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • Objectives : In order to investigate change of isokinetic trunk muscle strength according to decrease of body composition analysis parameter after obesity treatment. Methods : 2 obese patients have been treated with oriental medical obese treatment for 1 month. One patient got the exercise treatment, another didn't. Before and after treatment, the segmental bioelectrical impedance analysis, isokinetic trunk muscle strength test were performed. Then we analyzed the relationship of data. Results : After obesity treatment, BMI(Body Mass Index), PBF(Percentage of Body Fat), WHR(Waist Hip Ratio) were decreased in all patient and LBM(Lean Body Mass) was increased. In non-exercise patient, Ext.PT(extension Peak Torque) was decreased and Flex.PT(flexion Peak Torque) was increased. In exercise patient showed the opposite results. E/F ratio became more imbalance. Conclusions: Ext.PT was decreased in non-exercise patient but increased in exercise patient. And the trunk muscle strength became imbalance in both patients, right after the treatment. So trunk muscle exercise should be carried out and it is necessary to do long term study.

  • PDF