• Title/Summary/Keyword: Hinge Structure Design

Search Result 104, Processing Time 0.033 seconds

Design and Structural Analysis on the Open and Close Hinge for Complex Machine (복합기 커버 개폐용 힌지의 설계와 구조 해석)

  • Yun, Yeo-Kwon;Yang, Kwang-Mo;Kim, Do-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.49-54
    • /
    • 2012
  • As all kind of industry has developed, metal structure and machine instrument use bolt, pin, rivet and welding for assembly and combination. For pin and hinge, dimension accuracy is crucial to keep the operation and safety of the structure and machine instrument. In case of complex machine, the hinge for cover open-loop system is one of the significant design elements. Most of the hinges are being imported and assembled sine they give high technology development cost for its unit cost position. The reason is that the localization of hinge is inadequate. As the demand increase and the necessity of localization grow, it is now more important than ever to develop low cost structure. By the low cost structure, a new technology could be obtained for electronic product and structural hinge since it would enable for complex machine hinge to be guaranteed, technologically. Open-loop hinge is the link type and designed for the structure to keep constant open-loop. And, the hinge is examined in design stability by finite element analysis method. In this paper, the operation result is presented when the hinge for complex machine open-loop is designed for link type structure.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Optimal Design for Parallelogram Type Flexure Hinge (Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계)

  • Choi, Ju Yong;Eom, Sang In;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

Design of Compliant Hinge Joints inspired by Ligamentous Structure (인대 구조에 기인한 유연 경첩 관절의 설계)

  • Lee, Geon;Yoon, Dukchan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

Fluid-Oscillation Coupled Analysis for HAWT Rotor Blade (One Degree of Freedom Weak Coupling Analysis with Hinge-Spring Model)

  • Imamura, Hiroshi;Hasegawa, Yutaka;Murata, Junsuke;Chihara, Sho;Takezaki, Daisuke;Kamiya, Naotsugu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.197-205
    • /
    • 2009
  • Since large-scale commercial wind turbine generator systems such as MW-class wind turbines are becoming widely operated, the vibration and distortion of the blade are becoming larger and larger. Therefore the soft structure design instead of the solid-design is one of the important concepts to reduce the structural load and the cost of the wind turbine rotors. The objectives of the study are development of the fluid-structure coupled analysis code and evaluation of soft rotor-blade design to reduce the unsteady structural blade load. In this paper, fluid-structure coupled analysis for the HAWT rotor blade is performed by free wake panel method coupled with hinge-spring blade model for the flapwise blade motion. In the model, the continuous deflection of the rotor blade is represented by flapping angle of the hinge with one degree of freedom. The calculation results are evaluated by comparison with the database of the NREL unsteady aerodynamic experiment. In the analysis the unsteady flapwise moments in yawed inflow conditions are compared for the blades with different flapwise eigen frequencies.

Ground Beam Structure Based Joint Stiffness Controlling Method for the Design of Compliant Mechanism (바닥 보 구조 기반 조인트 강성 조절법을 이용한 컴플라이언트 메커니즘의 설계)

  • Kim, Myung-Jin;Jang, Gang-Won;Kim, Yoon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.151-156
    • /
    • 2007
  • Topology optimization has been widely used in many research areas due to its ability in providing intial designs for the problems with complex boundary conditions. This also has been useful in compliant mechanisms, but resulting layouts may not be immediately manufacturable because they usually consist of members with varying widths and shapes. Also, there occurs some numerical difficulties such as checkerboards or hinge patterns which result from 1-node connection, and intermediate values which make the manufacturing of the designed structure difficult. Though there are many remedies given to avoid this problems, they cannot be prevented. One may avoid this difficulty by employing uniform ground beams and explicit hinge joints. The proposed method is to connect uniform ground beams with elastic short-beam hinge joints. By choosing the widths of short beams as design variables, dominant deformations can occur mainly by flexible joints having intermediate widths. Unlike the conventional methods used for compliance minimization, intermediate widths must appear in compliant mechanism design problems. Also, the present approach does not encounter the problem of one-point hinges.

  • PDF

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

Optimization of a Piezoelectric Actuator using Bridge-Type Hinge Mechanism (브릿지형 힌지 메커니즘을 이용한 압전구동기의 최적화)

  • 김준형;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.168-175
    • /
    • 2003
  • In this research, a bridge-type flexure hinge mechanism is developed and optimized to amplify the displacement of a multilayer piezostack. Developed hinge mechanism has three-dimensional structure to reduce link size, so it have high amplification ratio with respect to small size. A flexure hinge is assumed to be 6 degree-of-freedom spring elements and matrix methods are used to model a hinge mechanism. To verify derived matrix model, a displacement and frequency experiments are performed. The analysis result shows that the displacemental error between matrix model and experiments is below 10 percents and the deformation of hinge in parasitic direction should be considered In hinge modeling. Using developed matrix model, an optimal design is performed to maximize the performance of hinge mechanism.

A Study on the Development of a Cantilever & Swing-Type Fast Tool Servo with Rotational Moment Hinge Design (회전모멘트 힌지 설계에 따른 캔틸레버형 횡방향 구동 Fast Tool Servo 연구 개발에 관한 고찰)

  • Lee, Seung Jun;Jeong, Jae Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.43-49
    • /
    • 2020
  • The growth of the AR/VR market due to the advent of the 4th Industrial Revolution begins with the development of the display industry. The development of OLED and flexible displays is further accelerated by the development of R2R technology. Micro-processing technology using a fast tool servo (FTS), the core technology in R2R processes, is making technological progress in increasingly diverse ways. This paper proposes a method to develop an FTS for horizontal driving and presents this method through experiments and analyses. To develop a swing-type FTS based on a seesaw motion, a rotational moment hinge structure was designed for each type, and research was conducted to determine an effective design method. A cantilever-based swing-type FTS was developed in two variations: one with single-side hinges and another with dual-side hinges. The parameters in the design of the swing-type FTS are rotational moment, natural frequency, and material selection. In conclusion, an FTS with a single-side hinge demonstrates the high performance required for micro processing.