• Title/Summary/Keyword: Hinge Moment

Search Result 179, Processing Time 0.022 seconds

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis (비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명)

  • Park, Duhee;Lee, Tae-Hyung;Kim, Hansup;Park, Jeong-Seon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • In a performance-based design, the structural safety is estimated from pre-defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Application of ultrasonic energy to enhance capability of soil improving material (지반보강용 주입재의 성능향상을 위한 초음파 에너지의 활용)

  • Moon, Jun-ho;Xin, Zhenhua;Jeong, Ghang-bok;Kim, Young-uk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.567-576
    • /
    • 2017
  • In a performance-based design, the structural safety is estimated from pre- defined damage states and corresponding damage indices. Both damage states and damage indices are well defined for above-ground structures, but very limited studies have been performed on underground structures. In this study, we define the damage states and damage indices of a cut-and-cover box tunnel which is one of typical structures used in metro systems, under a seismic excitation from a series of inelastic frame analyses. Three damage states are defined in terms of the number of plastic hinges that develop within the structure. The damage index is defined as the ratio of the elastic moment to the yield moment. Through use of the proposed index, the inelastic behavior and failure mechanism of box tunnels can be simulated and predicted through elastic analysis. In addition, the damage indices are linked to free-field shear strains. Because the free-field shear strain can be easily calculated from a 1D site response analysis, the proposed method can be readily used in practice. Further studies are needed to determine the range of shear strains and associated uncertainties for various types of tunnels and site profiles. However, the inter-linked platform of damage state - damage index - shear wave velocity - shear strain provides a novel approach for estimating the inelastic response of tunnels, and can be widely used in practice for seismic designs.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Analytical Study of Ultimate Behavior of Steel Cable-stayed Bridges (완성계 강사장교의 극한 거동의 해석적 연구)

  • Kim, Seungjun;Im, Seok-Been;Lee, Kee-Sei;Kang, Young-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.85-95
    • /
    • 2012
  • This paper presents an investigation on the ultimate behavior of steel cable-stayed bridges using nonlinear finite element analysis method. Cable-stayed bridges exhibit various geometric nonlinearities as well as material nonlinearities, so rational nonlinear finite element analysis should be performed for investigation of the ultimate behavior. In this study, ultimate behavior of steel cable-stayed bridges was studied using rational ultimate analysis method. Nonlinear equivalent truss element and nonlinear frame element were used for modeling the cable, girder and mast. Moreover, refined plastic hinge method was adopted for considering the material nonlinearity of steel members. In this study, the 2-step analysis method was used. Before live load analysis, initial shape analysis was performed in order to consider the dead load condition. For investigation of the ultimate behavior of steel cable-stayed bridges, analysis models which span length is 920.0 m were used. Radiating type and fan type were considered as the cable-arrangement types. With various quantitative evidences such as load-displacement curves, deformed shapes, locations of the yield point or region, bending moment distribution and so on, the ultimate behavior of steel cable-stayed bridges was investigated and described in this paper.

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

A Study on the Vibration Characteristics of Attitude Maneuvering of Satellite (위성의 자세기동에 따른 진동특성에 관한 연구)

  • Pyeon, Bong-Do;Bae, Jae-Sung;Kim, Jong-Hyuk;Park, Jung-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2019
  • The design requirements of modern satellites vary depending on the purpose of operation. Like conventional medium and large-scale satellites, small satellites which operate on low orbit may also serve military purposes. As a result, there is increased demand for high-resolution photos and videos and multi-target observation becomes important. The most important design parameter for multi-target observation is the satellites' maneuverability. For increased maneuverability, the miniaturization is required to increase the stiffness of the satellite as this decreases the mass moment of inertia of the satellite. In the case of a solar panel having relatively low stiffness compared to the satellites' body, vibrations are generated when the attitude maneuver is performed, which greatly influences the image acquisition. For verification of such vibrational characteristics, the satellites is modeled as a reduced model, and experimental zig for simulating attitude maneuver is introduced. A rigidity simulator for simulating the stiffness of the satellite is also proposed. Additionally, the objective of the experimental method is to simulate the maneuvering angle of the satellite based on the winding length of the wire using a step motor, and to experimentally verify the vibration characteristics of the satellite body and the solar panel generated during the maneuvering test.