• Title/Summary/Keyword: Hinge

Search Result 1,073, Processing Time 0.027 seconds

Evaluation of Seismic Performance for Building Structures by Hysteresis Model of Elements (부재의 이력모델에 따른 건축구조물의 내진성능 평가)

  • Han, Duck-Jeon;Ko, Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2009
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. But, it is difficulty that predict the building behavior of actual and exact in simplified load-deformation relation of structural material and members. In this study, system ductility and story ductility capacity of building structure used to the Backbone hinge Model are estimated and compared considering the characteristics of load-deformation relation of structural material and members. Analyses results, bilinear hinge model has lower system ductility and story ductility demands than those of backbone hinge model.

  • PDF

A Structural Analysis of Tsunami-proof Damper in Nuclear Power Plant (원자력 발전소에서 쓰나미 방지용 댐퍼에 대한 구조해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.603-609
    • /
    • 2020
  • The purpose of this study is to research dampers, which are applied mainly to buildings adjacent to the coast, such as nuclear facilities, and used for ventilation and can safely protect lives and equipment in emergency situations. Comparing the equivalent stress for three models with hinge reinforcement and support reinforcement based on the early design model for Damper, in the Base model, the highest stress occurred in the part of hinge, especially in the centrally mounted hinge, and after reinforced the hinge, it was occurred in the rear support. For models reinforced hinges and supports, it is considered that reinforcement for stiffness will be required in the future as it entered within the range of allowable stress. For the safety factor distribution, the minimum safety ratio was sufficiently secured at least 1 and was high at the edge of the Damper frame and the Blade. As the hinge was reinforced, the safety factor distribution of Blade was increased, and it was verified that the safety factor was secured through the support reinforcement.

Increasing plastic hinge length using two pipes in a proposed web reduced beam section, an experimental and numerical study

  • Zahrai, Seyed M.;Mirghaderi, Seyed R.;Saleh, Aboozar
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.421-433
    • /
    • 2017
  • Experimental and numerical studies of a newly developed Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS) have been recently conducted. This paper presents experimental and numerical results of extending the plastic hinge length on the beam flange to increase energy dissipation of a proposed version of the TW-RBS connection with two pipes, (TW-RBS(II)), made by replacing a part of flat web with two steel tubular web at the desirable location of the beam plastic hinge. Two deep-beam specimens with two pipes are prepared and tested under cyclic loads. Obtained results reveal that the TW-RBS(II) like its type I, increases story drift capacity up to 6% in deep beam much more than that stipulated by the current seismic codes. Based on test results, the proposed TW-RBS(II) helps to dissipate imposed energy up to 30% more than that of the TW-RBS(I) specimens at the same story drift and also reduces demands at the beam-to-column connection up to 30% by increasing plastic hinge length on the beam flange. The TW-RBS(II) specimens are finally simulated using finite element method showing good agreement with experimental results.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

Roof Crush Analysis Technique Using Simple Model with Plastic Hinge Concepts (소성 힌지를 갖는 단순 보 모델을 이용한 루프 붕괴 해석 기술)

  • 강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.216-222
    • /
    • 1996
  • This paper presents a computational technique to predict roof crush resistance in early design stage of passenger car development. This technique use a simple F.E. model with nonlinear spring elements which represent plastic hinge behavior at weak areas. By assuming actual sections as equivalent simple sections, maximum bending moments which weak areas in major members can stand are theoretically calculated. Results from prediction of roof crush resistance are correlated well with test results.

  • PDF

Development of High-Performance Technology of Beam-Column Joints in Reinforced Concrete Building (철근콘크리트 건물의 보-기둥 접합부 고성능화 기술 개발에 관한 연구)

  • 하기주;신종학;조효식;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.553-556
    • /
    • 1999
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge. Specimens(HJAI, HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints.

  • PDF

SVC with Modified Hinge Loss Function

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.905-912
    • /
    • 2006
  • Support vector classification(SVC) provides more complete description of the linear and nonlinear relationships between input vectors and classifiers. In this paper we propose to solve the optimization problem of SVC with a modified hinge loss function, which enables to use an iterative reweighted least squares(IRWLS) procedure. We also introduce the approximate cross validation function to select the hyperparameters which affect the performance of SVC. Experimental results are then presented which illustrate the performance of the proposed procedure for classification.

  • PDF

Gate Location Design of an Automobile Junction Box with Integral Hinges (복합힌지를 갖는 차량용 정션박스의 게이트 위치설계)

  • 김홍석
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.134-140
    • /
    • 2003
  • Polymers such as polypropylene or polyethylene offer a unique feature of producing an integral hinge, which can flex over a million times without causing a failure. With such advantage manufacturing, time and cost required at the assembly stage can be eliminated by injecting the whole part as one piece. However, due to increased fluidity resistance at hinges during molding, several defects such as short shot or premature hinge failure can occur with the improper selection of gate locations. Therefore, it is necessary to optimize flow balancer in injection molding of part with hinges before actually producing molds. In this paper, resin flow patterns depending on several gate positions were investigated by numerical analyses of a simple strip part with a hinge. As a result, we found that the properly determined gate location leads to better resin flow and shorter hesitation time. Finally, injection molding tryouts using a mold that was designed one of the proposed gate systems were conducted using polypropylene that contained 20% talc. The experiment showed that hinges without defects could be produced by using the designed gate location.

A Study on the Shape Design of Cylindrical Cam in a Folder Hinge Mechanism for Mobile Phones (휴대폰 폴더힌지기구를 위한 원통캠 형상 설계에 관한 연구)

  • Lee S.J.;Park J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1613-1616
    • /
    • 2005
  • In this paper, we developed an algorithm of generating cam contour curve for hinge mechanism of folder-type mobile phone. The main feature of this hinge mechanism is that we can operate uniform torque to open or close the mobile phone. We divided the opening or closing intervals of the cam into finite sub-intervals, and then we determined the cam contour curve of each sub-interval as a parabolic curve. Finally, these finite parabolic curves form the total cam contour. We can design single cam, which composed moving cam with contour curve and fixed cam that plays only roller, and twin cam with contour curve that is made up the pair of two cams symmetrically.

  • PDF