• 제목/요약/키워드: Hill-Clohessy-Wiltshire equation

검색결과 3건 처리시간 0.02초

타원 상대운동 여러 궤도 해의 단주기 비교 (SHORT-TERM COMPARISON OF SEVERAL SOLUTIONS OF ELLIPTIC RELATIVE MOTION)

  • 조중현;이우경;백정호;최남미
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.315-326
    • /
    • 2007
  • 최근에 제안된, 이웃하는 타원 궤도의 상대운동에 대한 몇 가지 양함수형 해를 분석하였다. 이 해를 이용한 상대운동 결과를 일반 선형화 운동 방정식의 해석적 해와 비교했다. 수치계산 결과를 위한 초기 조건은 Hill-Clohessy-Wiltshire(HCW) 운동방정식에 의한 해의 역함수로 구했다. 기준 궤도의 차이에도 불구하고 상대적으로 작은 이심률의 궤도 일 경우에는 타원 상대운동 궤도와 원 상대운동 궤도의 결과는 근접했다. 주위성의 궤도가 상대적으로 큰 이심률을 가질 경우에는, 기본 궤도로 원 궤도를 이용하는 HCW 운동방정식은 다른 타원 상대운동 궤도 방정식의 해보다 상대적으로 큰 오차를 갖는다.

A New Method of determining Initial Conditions for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.1-8
    • /
    • 2003
  • Satellite formation flying is the placing micro-satellites with the same mission into nearby orbits to form a cluster. Clohessy-Wiltshire equations are used to describe the relative motion and control strategies between satellites within a cluster, which are known as Hill's equations. Even though Hill's equations are powerful in determining initial conditions for the satellite formation flying, they can not accurately express the relative motion under J2 perturbation. Some methods have been developed for the determination of initial conditions to avoid limits of Hill's equation. This paper gives a new method of determining initial conditions using mean elements. For this research mean elements were transformed to osculating elements using Brouwer's theory and the orbit was propaeated with the consideration of J2-J8 to get a relative position. The results show that satellites within a cluster are maintained in the desired boundary for long period and the method is effective on a fuel saving for satellite formation flying.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.