• Title/Summary/Keyword: Hilbert Huang Transform

Search Result 58, Processing Time 0.024 seconds

Identification of Underwater Ambient Noise Sources Using Hilbert-Huang Transfer (힐버트-후앙 변환을 이용한 수중소음원의 식별)

  • Hwang, Do-Jin;Kim, Jea-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2008
  • Underwater ambient noise originating from geophysical, biological, and man-made acoustic sources contains information on the source and the ocean environment. Such noise affectsthe performance of sonar equipment. In this paper, three steps are used to identify the ambient noise source, detection, feature extraction, and similarity measurement. First, we use the zero-crossing rate to detect the ambient noisesource from background noise. Then, a set of feature vectors is proposed forthe ambient noise source using the Hilbert-Huang transform and the Karhunen-Loeve transform. Finally, the Euclidean distance is used to measure the similarity between the standard feature vector and the feature vector of the unknown ambient noise source. The developed algorithm is applied to the observed ocean data, and the results are presented and discussed.

Seismic damage potential described by intensity parameters based on Hilbert-Huang Transform analysis and fundamental frequency of structures

  • Tyrtaiou, Magdalini;Elenas, Anaxagoras
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • This study aims to present new frequency-related seismic intensity parameters (SIPs) based on the Hilbert-Huang Transform (HHT) analysis. The proposed procedure is utilized for the processing of several seismic accelerograms. Thus, the entire evaluated Hilbert Spectrum (HS) of each considered seismic velocity time-history is investigated first, and then, a delimited area of the same HS around a specific frequency is explored, for the proposition of new SIPs. A first application of the suggested new parameters is to reveal the interrelation between them and the structural damage of a reinforced concrete frame structure. The index of Park and Ang describes the structural damage. The fundamental frequency of the structure is considered as the mentioned specific frequency. Two statistical methods, namely correlation analysis and multiple linear regression analysis, are used to identify the relationship between the considered SIPs and the corresponding structural damage. The results confirm that the new proposed HHT-based parameters are effective descriptors of the seismic damage potential and helpful tools for forecasting the seismic damages on buildings.

Applications of the improved Hilbert-Huang transform method to the detection of thermo-acoustic instabilities (열음향학적 불안정성 검출에 대한 개선된 힐버트-후앙 변환의 적용)

  • Cha, Ji-Hyeong;Kim, Young-Seok;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.555-561
    • /
    • 2012
  • The Hilbert Huang Transform (HHT) technigue with Empirical Mode Decomposition (EMD) is one of the time-frequency domain analysis methods and it has several advantages such that analyzing non-stationary and nonlinear signal is possible. However, there are shortcomings in detecting near-range of frequencies and added noise signals. In this paper, to analyze characteristics of each method, HHT and Short-Time Fourier Transform (STFT) effective in dealing with stationary signals are compared. And with thermoacoustic instabilities signals from a Rijke tube test, HHT and the improved HHT with Ensemble Empirical Mode Decomposition (EEMD) are compared. The results show that the improved HHT is more appropriate than the original HHT due to the relative insensitivity to noise. Therefore it will result in more accurate analysis.

  • PDF

Evaluating Efficacy of Hilbert-Huang Transform in Analyzing Manufacturing Time Series Data with Periodic Components (제조업의 주기성 시계열분석에서 힐버트 황 변환의 효용성 평가)

  • Lee, Sae-Jae;Suh, Jung-Yul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Real-life time series characteristic data has significant amount of non-stationary components, especially periodic components in nature. Extracting such components has required many ad-hoc techniques with external parameters set by users in case-by-case manner. In our study, we evaluate whether Hilbert-Huang Transform, a new tool of time-series analysis can be used for effective analysis of such data. It is divided into two points : 1) how effective it is in finding periodic components, 2) whether we can use its results directly in detecting values outside control limits, for which a traditional method such as ARIMA had been used. We use glass furnace temperature data to illustrate the method.

Mode-by-mode evaluation of structural systems using a bandpass-HHT filtering approach

  • Lin, Jeng-Wen
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.697-714
    • /
    • 2010
  • This paper presents an improved version of the Hilbert-Huang transform (HHT) for the modal evaluation of structural systems or signals. In this improved HHT, a well-designed bandpass filter is used as preprocessing to separate and determine each mode of the signal for solving the inherent modemixing problem in HHT (i.e., empirical mode decomposition, EMD, associated with the Hilbert transform). A screening process is then applied to remove undesired intrinsic mode functions (IMFs) derived from the EMD of the signal's mode. A "best" IMF is selected in each screening process that utilizes the orthogonalization coefficient between the signal's mode and its IMFs. Through mode-by-mode signal filtering, parameters such as the modal frequency can be evaluated accurately when compared to the theoretical value. Time history of the identified modal frequency is available. Numerical results prove the efficiency of the proposed approach, showing relative errors 1.40%, 2.06%, and 1.46%, respectively, for the test cases of a benchmark structure in the lab, a simulated time-varying structural system, and of a linear superimposed cosine waves.

Event Trigger Generator for Gravitational-Wave Data based on Hilbert-Huang Transform

  • Son, Edwin J.;Chu, Hyoungseok;Kim, Young-Min;Kim, Hwansun;Oh, John J.;Oh, Sang Hoon;Blackburn, Lindy;Hayama, Kazuhiro;Robinet, Florent
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.55.4-56
    • /
    • 2015
  • The Hilbert-Huang Transform (HHT) is composed of the Empirical Mode Decomposition (EMD) and the Hilbert Spectral Analysis (HSA). The EMD decomposes any time series data into a small number of components called the Intrinsic Mode Functions (IMFs), compared to the Discrete Fourier Transform which decomposes a data into a large number of harmonic functions. Each IMF has varying amplitude and frequency with respect to time, which can be obtained by HSA. The time resolution of the modes in HHT is the same as that of the given time series, while in the Wavelet Transform, Constant Q Transform and Short-Time Fourier Transform, there is a tradeoff between the resolutions in frequency and time. Based on the time-dependent amplitudes of IMFs, we develop an Event Trigger Generator and demonstrate its efficiency by applying it to gravitational-wave data.

  • PDF

Damage Detection for Bridge Pier System Using filbert-Huang Transom Technique (Hilbert-Huang변환을 이용한 교각시스템의 손상위치 추정기법)

  • 윤정방;심성한;장신애
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.159-168
    • /
    • 2002
  • A recently developed filbert-Huang transform (HHT) technique is applied to detect damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and nonstationary behavior, since the HHT can show the instantaneous frequency characteristics of the signal. A series of numerical simulations were conducted for bridge pier systems with damages under a controlled load with sweeping frequency. The results of the numerical simulation study indicate that the HHT method can reasonably identify damage locations using a limited number of acceleration sensors under severe measurement noise condition.

  • PDF

Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks

  • Wang, W.J.;Lu, Z.R.;Liu, J.K.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.169-185
    • /
    • 2012
  • The concrete bridge is likely to produce fatigue cracks during long period of service due to the moving vehicular loads and the degeneration of materials. This paper deals with the time-frequency analysis of a coupled bridge-vehicle system. The bridge is modeled as an Euler beam with breathing cracks. The vehicle is represented by a two-axle vehicle model. The equation of motion of the coupled bridge-vehicle system is established using the finite element method, and the Newmark direct integration method is adopted to calculate the dynamic responses of the system. The effect of breathing cracks on the dynamic responses of the bridge is investigated. The time-frequency characteristics of the responses are analyzed using both the Hilbert-Huang transform and wavelet transform. The results of time-frequency analysis indicate that complicated non-linear and non-stationary features will appear due to the breathing effect of the cracks.

Fault Diagnosis for Rotating Machinery with Clearance using HHT (HHT를 이용한 간극이 있는 회전체의 고장진단)

  • Lee, Seung-Mock;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.895-902
    • /
    • 2007
  • Rotating machinery has two typical faults with clearance, one is partial rub and the other is looseness. Due to these faults, non-linear and non-stationary signals are occurred. Therefore, time-frequency analysis is necessary for exact fault diagnosis of rotating machinery. In this paper newly developed time-frequency analysis method, HHT(Hilbert-Huang Transform) is applied to fault diagnosis and compared with other method of FFT, SFFT and CWT. The results show that HHT can represent better resolution than any other method. Consequently, the faults of rotating machinery are diagnosed efficiently by using HHT.

  • PDF

Application of Hilbert-Huang transform for evaluation of vibration characteristics of plastic pipes using piezoelectric sensors

  • Cheraghi, N.;Riley, M.J.;Taherit, F.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.653-674
    • /
    • 2007
  • This paper discusses the application of piezoelectric sensors used for evaluation of damping ratio of PVC plastics. The development of the mathematical formulation based on the Empirical Mode Decomposition for calculating the damping coefficient and natural frequency of the system is presented. A systematic experimental and analytical investigation was also carried out to demonstrate the integrity of several methods commonly used to evaluate the damping of materials based on a single degree freedom formulation. The influence of the sensors' location was also investigated. Besides the commonly used methods, a newly emerging time-frequency method, namely the Empirical Mode decomposition, is also employed. Mathematical formulations based on the Hilbert-Huang formulation, and a frequency spacing technique were also developed for establishing the natural frequency and damping ratio based on the output voltage of a single piezoelectric sensor. An experimental investigation was also conducted and the results were compared and verified with Finite Element Analysis (FEA), revealing good agreement.