• Title/Summary/Keyword: Highly preheated air

Search Result 6, Processing Time 0.099 seconds

Flame Stabilization and Control in Gas Turbine Combustor (가스터어빈 연소기의 화염 안정화와 제어)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • This paper presents the characteristics of lifted height and flame length from non-premixed jet flames in highly preheated air to investigate the detail combustion mechanism in the gas turbine or HCCI engine, etc. Special attention was paid to the effect of preheated air temperature, oxygen concentration and fuel injection flow rate on flame length and lifted hight. By using highly preheated air, stable flames were formed even in low oxygen concentration condition. The lifted height increased with decreasing preheated air temperature, where the flame length showed opposed phenomena. The flamelet model, which is thought to have very thin flamelet, is difficult to applicable to the present flame conditions which is formed In low oxygen concentration in highly preheated air.

  • PDF

Solid Fuel in the Highly Preheated Air Combustion (고체 연료의 고온 공기 연소 특성에 관한 연구)

  • Jin, Hong-Jong;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.185-192
    • /
    • 2002
  • A laboratory scale thermogravimetric analyser was developed to investigate the combustion characteristics of selected solid fuel(wood) in the highly preheated air. The aims are to introduce in the means of experimental determination of the solid fuel particle characteristics through the combustion process in the environment of highly preheated air. A nearly single particle combustion condition was reproduced in a thermogravimetric analyser and regenerating combustor. For a fuel particle whose characteristic length was a few centimeter, the sub-processes of fuel drying, pyrolysis as well as the combustion of residual carbon were identified. Fluidized environment of carrier gas was selected as the major parameter which affect the combustion process.

  • PDF

The Relationship Between Firing Modes and Nitric Oxide Emission In Highly Preheated Air Combustion

  • Choi, Gyung-Min;Katsuki, Masahi;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.433-440
    • /
    • 2000
  • The influence of combustion air at temperatures on nitric oxide emission was studied. The nitric oxide emission generally increases with a rise in the temperature of the combustion air. However, if combustion products for dilution of fuel or combustion air are used before the combustion reaction, then the nitric oxide emission can be reduced even when highly preheated air for combustion air is used. Combustion in low oxygen concentrations flattens the firing mode, resulting in a uniform reaction, and, thus, low nitric oxide emission can be achieved.

  • PDF

Characteristics of Preheated Air Combustion in a Laminar Premixed Flame (층류 예혼합 화염의 예열공기 연소특성)

  • Lee, Jong-Ho;Lee, Seung-Young;Hahn, Jae-Won;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and $N_2$ addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of $N_2$ in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of $N_2$ addition is not significant. But $N_2$ addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

An Experimental Study on the Combustion Characteristics with Superadiabatic Combustor in Porous Media (다공성물질을 이용한 초단열 연소장치에서의 연소특성의 실험적 연구)

  • Chae, J.O.;Dobrego, K.V.;Sim, M.S.;Chung, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.399-405
    • /
    • 1994
  • Beacuse of the energy resources exhaustion, the aggravating environmental air pollution and the smoke phenomena etc., the importance of clean gas fuel compared with liquid fuel is highly considered in recent years. The combustion system which consists of porous media is actively studied as a new method for solving above problems. Therefore, excess enthalpy combustion using porous media was interested by many researchers and investigated through numerical and experimental analysis. In this study, the simplified combustor has the unique combustion characteristics of mixture gas preheated effect using radiative and convective heat energy by changing the flow passage of unburned gas with solenoid valves and has the intensive excess enthalpy phenomena As the result of according to reduce equivalence ratio, flame temperature was remarkably higher than adiabatic flame temperature. This show the ability of super-lean combustion.

  • PDF

The Development of Flameless Regenerative Burner for the Industrial Furnaces (공업로용 무화염식 축열버너의 국산화 개발)

  • Kim, Won-Bae;Yang, Je-Bok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.