• 제목/요약/키워드: Highly porous membrane

검색결과 36건 처리시간 0.023초

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

Ultra-Drawing of Gel Films of Ultra High Molecular Weight Polyethylene/Low Molecular Weight Polymer Blends Containing $BaTiO_3$ Nanoparticles

  • Park Ho-Sik;Lee Jong-Hoon;Seo Soo-Jung;Lee Young-Kwan;Oh Yong-Soo;Jung Hyun-Chul;Nam Jae-Do
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.430-437
    • /
    • 2006
  • The ultra-drawing process of an ultra high molecular weight polyethylene (UHMWPE) gel film was examined by incorporating linear low-density polyethylene (LLDPE) and $BaTiO_3$ nanoparticles. The effects of LLDPE and the draw ratios on the morphological development and mechanical properties of the nanocomposite membrane systems were investigated. By incorporating $BaTiO_3$ nanoparticles in the UHMWPE/LLDPE blend systems, the ultra-drawing process provided a highly extended, fibril structure of UHMWPE chains to form highly porous, composite membranes with well-dispersed nanoparticles. The ultra-drawing process of UHMWPE/LLDPE dry-gel films desirably dispersed the highly loaded $BaTiO_3$ nanoparticles in the porous membrane, which could be used to form multi-layered structures for electronic applications in various embedded, printed circuit board (PCB) systems.

니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성 (Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane)

  • 조경원;최재하;정석;김경일;홍태환;안중우
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

수소 분리용 팔라듐계 분리막의 세라믹 코팅 영향 (Ceramic barrier coated Pd hydrogen membrane on a porous nickel support)

  • 이춘부;이성욱;박진우;김광호;황경란;박종수;김성현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • A highly performed Pd-based hydrogen membrane has prepared successfully on a modified porous nickel support. The porous nickel support modified by impregnation method of $Al(NO_3)_3{\cdot}9H_2O$ (Aldrich Co.) over the nickel powder showed a strong resistance to hydrogen embrittlement and thermal stability. Plasma surface modification treatment was introduced as a pre-treatment process instead of conventional HCl wet activation. Ceramic barrier was coated on the external surface of the prepared nickel supports to prevent intermetallic diffusion and to enhance the affinity between the support and membrane. Palladium and copper were deposited at thicknesses of $4\mu}m$ and $0.5{\mu}m$, respectively, on a barrier-coated support by DC sputtering process. The permeation measurement was performed in pure hydrogen at $400^{\circ}C$. The single gas permeation of our membrane was two times higher than that of the previous membrane which do not have ceramic barrier.

  • PDF

다공성 알루미나 박막을 이용한 나노마스크 제작 (Fabrication of Nano-mask Using Porous Alumina Membrane)

  • 정경한;류길용;장정수;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.364-365
    • /
    • 2006
  • One of the promising routes for producing highly ordered nanostructures is a template method using the porous alumina membrane (PAM). Because the PAM is mechanically, chemically, thermally stabile with highly ordered structure, many researchers have studied under various experimental conditions to fabricate nanostructures. We present the information on the fabrication of about 300 nm nano-mask which have important applications for various patterned nanostructures.

  • PDF

High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide(AAO) Membrane

  • Kim, Yong-Hyun;Han, Young-Hwan;Lee, Hyung-Jik;Lee, Hyung-Bock
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.191-195
    • /
    • 2008
  • Highly ordered silver nanowire with a diameter of 10 nm was arrayed by electroless deposition in a porous anodic aluminum oxide(AAO) membrane. The AAO membrane was fabricated electrochemically in an oxalic acid solution via a two-step anodization process, while growth of the silver nanowire was initiated by using electroless deposition at the long-range-ordered nanochannels of the AAO membrane followed by thermal reduction of a silver nitrate aqueous solution by increasing the temperature up to $350^{\circ}C$ for an hour. An additional electro-chemical procedure was applied after the two-step anodization to control the pore size and channel density of AAO, which enabled us to fabricate highly-ordered silver nanowire on a large scale. Electroless deposition of silver nitrate aqueous solution into the AAO membrane and thermal reduction of silver nanowires was performed by increasing the temperature up to $350^{\circ}C$ for 1 h. The morphologies of silver nanowires arrayed in the AAO membrane were investigated using SEM. The chemical composition and crystalline structure were confirmed by XRD and EDX. The electroless-deposited silver nanowires in AAO revealed a well-crystallized self-ordered array with a width of 10 nm.

저항변화식 가스센서 선택성 향상을 위한 멤브레인 및 촉매 연구동향 (Research Progress in Membrane and Catalyst for Highly Selective Chemiresistive Gas Sensors)

  • 장지수
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.11-17
    • /
    • 2022
  • Direct exposure to toxic and hazardous gases has always been considered as the most pervasive problem worldwide, leading to a gradual increase in the number of asthma patients due to NOx/SOx gases inhaling and exposure to 50 ppm formaldehyde gases. Therefore, the development of accurate gas sensors is a key issue for resolving these problems. To address such issues, the development of membranes for selective filtering of target molecules as well as nanocatalyst for enhancing the sensing selectivity is highly crucial. In this review, the research progress for porous membrane materials (e.g. MOFs, and graphene) and nanocatalyst technology for the development of selective and accurate gas sensors will be discussed.

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • 제8권1호
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

SPG 막유화법을 이용한 고분자 입자 제조기술의 동향 (Technology Trend for the Preparation of Polymeric Particles by SPG Technique)

  • 이상국;김성욱;최경호;임은희
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.222-231
    • /
    • 2009
  • 단분산이면서 마이크로 크기의 입자로 쉽게 조절이 가능한 SPG (Shirasu porous glass) 막유화법이 최근 각광을 받고 있다. SPG 막유화법은 다중에멀젼, 단분산, 다양한 형태 등을 쉽게 제조할 수 있는 장점을 가지고 있어서 기능성 입자를 만드는데 적합한 방법으로 최근 적용분야로는 토너입자, 식품첨가제, 약물전달 등으로 적용분야가 넓다. SPG 막유화법에서 입자크기 및 형태 조절 요소로는 개시제, 첨가제, 단량체, 가교제, 중합금지제 등이 있으며, SPG의 장점인 단분산을 싼 단가로 대량생산에 접목시킬 수 있기 때문에 여러 분야에서 다양한 접근이 가능하다.

다공막 주형에 의한 전도성 고분자 나노와이어의 합성 (Synthesis of Conductive Polymer Nano-wires by Porous Membrane Template)

  • 신화섭;염경호
    • 멤브레인
    • /
    • 제22권1호
    • /
    • pp.35-45
    • /
    • 2012
  • 양극산화 알루미나(AAO)막의 나노 사이즈 미세공(세공 크기 20 nm, 10 nm 및 200 nm)을 주형으로 사용하여 전도성 고분자인 폴리피롤, 폴리아닐린 중합체 및 폴리피롤/폴리아닐린 공중합체 나노와이어를 제조하였다. 미세공 주형 내에서 전도성 고분자의 성장은 세공의 벽면을 따라 튜브 형태로서 성장하였으며, 3시간 이후에는 내부가 완전히 채워진 나노와이어가 형성되었다. AAO 막을 수산화나트륨 용액으로 퍼리하여 세공 내에 형성된 전도성 고분자 나노와이어를 회수 하였으며. 회수된 나노와이어�l 직경과 길이는 주형 막의 세공 형상과 일치하였다. 통상의 용액 중합법으로 제조된 전도성 고분자 분말과 비교하여 주형 합성법으로 제조된 전도성 고분자 나노와이어는 결정성과 열적 안정성이 향상되었으며, 전기 저항은 4~60% 감소하였다.