• Title/Summary/Keyword: Highly Pathogenic Avian Influenza(HPAI)

Search Result 43, Processing Time 0.028 seconds

Social Network Type Analysis of Highly Pathogenic Avian Influenza(HPAI) Outbreaks in South Korea, 2014-2016 (2014-2016 국내 발생 고병원성조류인플루엔자(HPAI)의 사회연결망(Social Network) 유형 분석)

  • BAE, Sun-Hak;JEONG, Hae-Yong;EOM, Chi-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.114-126
    • /
    • 2016
  • Domestic risk factors that are thought to be correlated with highly pathogenic avian influenza (HPAI) outbreak are migratory birds and moving objects such as poultry farm vehicles. In particular, the commercial vehicles that routinely circulate the local and/or remote poultry farms produce are thought to be major HPAI risk factors in South Korea. In this study, the driving histories of the vehicles belonging to poultry farms and/or commercial companies registered in the Korea Animal Integrated System (KAHIS) were analyzed using statistical and social networking tools in a Geographic Information System (GIS) in order to understand the pattern of the HPAI (H5N8) outbreak that occurred in 2014 in South Korea. Based on the 2014 HPAI outbreak patterns, HPAI-infected poultry farms were categorized according to geological features. The HPAI-infected poultry farms were categorized as 'regional-accumulation', 'regional-distribution', 'metropolitan-accumulation', 'metropolitan-distribution' and 'national-distribution' in endemic or non-endemic regions. We were able to categorize most HPAI-infected poultry farms into the five proposed categories, but further studies are required to categorize all such farms. Based on this categorization system, we propose efficient but economical prevention boundaries in South Korea. We strongly believe that our research could hugely impact government decisions to estimate the prevention area.

Prevalence of infectious diseases (tuberculoss, brucellosis and the highly pathogenic avian influenza) of animals from 2004 to 2008 in Jeonbuk province, Korea (전북지역의 가축전염병 중 우결핵 부루셀라 및 고병원성조류인플루엔자 발생 동향 분석: 2004~2008년)

  • Hur, Boo-Hong;Lee, Jeong-Won;Song, Hee-Jong
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • The prevalence of major zoonotic diseases such as tuberculosis, brucellosis and the highly pathogenic avian influenza (HPAI) in Jeonbuk province was monitored from 2004 to 2008. For tuberculosis, a total of 306 heads from 92 farms were positive during the surveillance period, which 228 heads were from 78 dairy farms and 78 heads from 14 Hanwoo farms. Based on the number of recurrent tuberculosis in 92 positive farms, 28 farms or 43.8% of the positive farms had 1-4 additional outbreaks during the surveillance. Based on brucellosis surveillance of 5,252 dairy cattle and 2,600,829 Hanwoo conducted during the same time period, 4,818 heads from 1,203 farms were positive for brucellosis, which 445 heads were from 111 dairy farms and 4,373 heads from 1,092 Hanwoo farms. Among the 1,203 positive farms, 473 farms or 39.3% of the positive farms had experienced 1-4 recurrent brucellosis during the surveillance. According to nationwide surveillance of HPAI, a total of 45 cases had been reported between 2004 and 2008. Among those outbreaks, 20 cases were reported in Jeonbuk province and 3 cases in 2006 and 17 case in 2008. For the regional distribution of 20 cases in Jeonbuk, 4 cases (48,490 chickens), 4 cases (23,066 chickens 66(1) and ducks 23,000(3)), 11 cases (183,077 chickens 63,077 (10) and quails 120,000 (1)), and 1 case (9,000 ducks) were reported in Iksan, Jeongeup, Gimje and Sunchang, respectively.

A GIS-Based Mapping to Identify Locations at Risk for Highly Pathogenic Avian Influenza Virus Outbreak in Korea (지리정보시스템 기반의 고병원성 조류인플루엔자 발생 위험지도 구축)

  • Lee, Gyoungju;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.34 no.2
    • /
    • pp.146-151
    • /
    • 2017
  • Six major outbreaks of highly pathogenic avian influenza (HPAI) occurred from 2003 to 2016 in Korea. Epidemiological investigations of each outbreak revealed that migratory birds were the primary source of the HPAI virus. During the last five years, the geographic transmission pattern of domestic HPAI seems to have extended from local to nationwide; therefore, it is necessary to identify specific locations in which poultry farms are at elevated risk for HPAI outbreak to enable targeted surveillance and other mitigation strategies. Here, a geographical information system (GIS)-based analysis was used to identify geographic areas at high risk for future HPAI incidents in Korea based on historical outbreak data collected between December 2003 and April 2016. To accomplish this, seven criteria were used to identify areas at high-risk for HPAI occurrence. The first three criteria were based on defined spatial criteria buffering of 200 bird migration sites to some defined extents and the historical incidence of HPAI outbreaks at the buffering sites. The remaining criteria were based on combined attribute information such as number of birds or farms at district levels. Based on the criteria established for this study, the most-likely areas at higher risk for HPAI outbreak were located in Chungcheong, Jeolla, Gyeonggi, and Gyeongnam provinces, which are densely populated poultry regions considered major poultry-production areas that are located along bird migration sites. The proportion of areas at risk for HPAI occurrence ranged from 4.5% to 64.9%. For the worst criteria, all nine provinces, including Jeju Island, were found to be at risk of HPAI. The results of this study indicate that the number of poultry farms at risk for HPAI outbreaks is largely underestimated by current regulatory risk assessment procedures conducted for biosecurity authorization. The HPAI risk map generated in this study will enable easy use of information by policy makers to identify surveillance zones and employ targeted surveillance to reduce the impact of HPAI transmission.

Application of Species Distribution Model for Predicting Areas at Risk of Highly Pathogenic Avian Influenza in the Republic of Korea (종 분포 모형을 이용한 국내 고병원성 조류인플루엔자 발생 위험지역 추정)

  • Kim, Euttm;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • While research findings suggest that the highly pathogenic avian influenza (HPAI) is the leading cause of economic loss in Korean poultry industry with an estimated cumulative impact of $909 million since 2003, identifying the environmental and anthropogenic risk factors involved remains a challenge. The objective of this study was to identify areas at high risk for potential HPAI outbreaks according to the likelihood of HPAI virus detection in wild birds. This study integrates spatial information regarding HPAI surveillance with relevant demographic and environmental factors collected between 2003 and 2018. The Maximum Entropy (Maxent) species distribution modeling with presence-only data was used to model the spatial risk of HPAI virus. We used historical data on HPAI occurrence in wild birds during the period 2003-2018, collected by the National Quarantine Inspection Agency of Korea. The database contains a total of 1,065 HPAI cases (farms) tied to 168 unique locations for wild birds. Among the environmental variables, the most effective predictors of the potential distribution of HPAI in wild birds were (in order of importance) altitude, number of HPAI outbreaks at farm-level, daily amount of manure processed and number of wild birds migrated into Korea. The area under the receiver operating characteristic curve for the 10 Maxent replicate runs of the model with twelve variables was 0.855 with a standard deviation of 0.012 which indicates that the model performance was excellent. Results revealed that geographic area at risk of HPAI is heterogeneously distributed throughout the country with higher likelihood in the west and coastal areas. The results may help biosecurity authority to design risk-based surveillance and implementation of control interventions optimized for the areas at highest risk of HPAI outbreak potentials.

A Study on the Simulation and Analysis of the Emergency Response Training for Highly Pathogenic Avian Influenza (조류인플루엔자 재난대응훈련 시뮬레이션 기술연구)

  • Kang, Min-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • Simulation using the virtual reality has been applied in various fields such as exercise, education, disaster simulation training, but there is a little research on disease caused by virus transmission. In this study, we conducted simulation studies and analysis of avian influenza disaster response training. The annual avian influenza virus is recurring every year in Korea, but there are still few solutions and preventive measures for the preventing the avian influenza. The avian influenza can cause a great deal of societal harm and enormous economic damage. Prophylaxis is important because livestock epidemics, such as avian influenza and foot-and-mouth disease, have a large impact on farm households. Therefore, we proposed and analyzed contents that can be avoided through simulation of avian influenza disaster response presented in this study.

The outbreaks and counterplan of highly pathogenic avian influenza in Korea and overseas (국내.외 조류인플루엔자(HPAI) 발생현황과 대응방안)

  • Jang, Hyung-Kwan
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.220-227
    • /
    • 2009
  • For last about 10 years, the Republic of Korea experienced 3 times of outbreaks of highly pathogenic avian influenza (HPAI) from 10 December 2003 to 30 April 2004 (a total number of 19 outbreaks), 22 November 2006 to 6 March 2007 (a total number of 7 outbreaks), and 1 April 2008 to 12 May 2008 (a total number of 33 outbreaks). Among the totally 59 outbreaks, the infected premises included 35 chicken farms, 17 duck farms, 1 quail farm, and 6 farms rearing mixed species. Control measures were applied according to the HPAI standard operation procedure including depopulation of all infected and suspected flocks, movement restrictions, and disinfection of the infected farms within a 500-meter radius. Including movement restrictions, stringent control measures were additionally applied to two designated zones: the protection zone was an area within a 3-kilometer radius of the outbreak farm, and the surveillance zone was an area between a 3- to 10-kilometer radius of the outbreak farm. Farms with dangerous contacts and/or all of poultry within the protection zone was subjected to preemptive culling. Epidemiological investigations were also carried out including trace-back and trace-forward investigations to identify possible sources of spread and dangerous contact farms. Investigation teams conducted on-site examination of farm premises and facilities, interview with farm owner and staff, and review of records. Genetic and pathogenic characteristics of the virus isolates, and the results of the various surveillance activities were also analyzed. HPAI surveillance conducted in Korea includes passive surveillance of investigating notified cases, and active surveillance of testing high risk groups and areas. HPAI is a notifiable disease in Korea and all suspect cases must be reported to the veterinary authorities. Cases reported for other poultry diseases that require differential diagnosis are also tested for HPAI. Active surveillance includes annual testing of breeder duck farms, broiler duck farms and wild bird surveillance, which is concentrated during the autumn and winter. Surveillance activities conducted prior to the outbreaks have shown no evidence of HPAI infection in Korea.

  • PDF

The Analysis of HPAI Using CDR Data (CDR 자료를 이용한 고병원성 조류인플루엔자 분석)

  • Choi, Dae-Woo;Joo, Jae-Yun;Song, Yu-Han;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2019
  • This study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and is based on artificial intelligence-based HPAI spread analysis and patterning. The inflow of highly pathogenic avian influenza is coming through migratory birds from abroad, but it is not known exactly what pathways provide the farm with the cause of the infection. And the transition between farms from the generated farms only assumes that the vehicle is the main cause, and the main cause of the spread is not exactly known. Based on the call detailed records (CDR) data provided by KT, the study aims to see how people visiting migratory bird-watching sites, presumed to be the site of the outbreak, will flow through infected farms.

  • PDF

Impact of inland waters on highly pathogenic avian influenza outbreaks in neighboring poultry farms in South Korea

  • Ahmad, Saleem;Koh, Kyeyoung;Yoo, Daesung;Suh, Gukhyun;Lee, Jaeil;Lee, Chang-Min
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.36.1-36.14
    • /
    • 2022
  • Background: Since 2003, the H5 highly pathogenic avian influenza (HPAI) subtype has caused massive economic losses in the poultry industry in South Korea. The role of inland water bodies in avian influenza (AI) outbreaks has not been investigated. Identifying water bodies that facilitate risk pathways leading to the incursion of the HPAI virus (HPAIV) into poultry farms is essential for implementing specific precautionary measures to prevent viral transmission. Objectives: This matched case-control study (1:4) examined whether inland waters were associated with a higher risk of AI outbreaks in the neighboring poultry farms. Methods: Rivers, irrigation canals, lakes, and ponds were considered inland water bodies. The cases and controls were chosen based on the matching criteria. The nearest possible farms located within a radius of 3 km of the case farms were chosen as the control farms. The poultry farms were selected randomly, and two HPAI epidemics (H5N8 [2014-2016] and H5N6 [2016-2017]) were studied. Conditional logistic regression analysis was applied. Results: Statistical analysis revealed that inland waters near poultry farms were significant risk factors for AI outbreaks. The study speculated that freely wandering wild waterfowl and small animals contaminate areas surrounding poultry farms. Conclusions: Pet birds and animals raised alongside poultry birds on farm premises may wander easily to nearby waters, potentially increasing the risk of AI infection in poultry farms. Mechanical transmission of the AI virus occurs when poultry farm workers or visitors come into contact with infected water bodies or their surroundings. To prevent AI outbreaks in the future, poultry farms should adopt strict precautions to avoid contact with nearby water bodies and their surroundings.

Current Status and Characteristics of Highly Pathogenic Avian Influenza (고병원성 가금인플루엔자의 최근 발생동향과 질병 특성)

  • Kim, J.H.;Sung, H.W.;Kwon, Y.K.;Lee, Y.J.;Choi, J.G.;Cho, S.J.;Kim, M.C.;Lee, E.K.;Jang, H.;Wee, S.H.;Mo, I.P.;Song, C.S.;Park, J.M.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.2
    • /
    • pp.119-128
    • /
    • 2004
  • Highly Pathogenic Avian Influenza (HPAI) is a very acute systemic disease in poultry, particularly in chickens and turkeys caused by HPAI viruses. An outbreak of HPAI caused by subtype H5N1, was first reported in a broiler breeder farm on December 10, 2003 in Korea, although there had been twenty one outbreaks of the disease reported in the world before. Since mid-December 2003, eight Asian countries have confirmed outbreaks of HPAI due to the same subtype. The outbreak has also resulted in at least twenty three fatal human cases in Vietnam and Thailand as of May 17, 2004 according to the WHO. Regarding the first outbreak of recent Asian HPAI, it has been suspected that some Asian countries with the exception of Korea and Japan veiled the fact of HPAI outbreaks since the last half of 2003, even though it was first reported in Korea. There have been total nineteen outbreaks of HPAI among chicken and duck farms in 10 provinces in Korea since Dec. 2003 and approximately 5,280,000 birds were slaughtered from 392 farms for eradication of the disease and preemptive culling. The origin of the H5Nl HPAI virus introduced into the country are unknown and still under epidemiological investigation. Current status of outbreaks and characteristics of HPAI will be reviewed and discussed on the basis of genetic, virological, clinicopathological, and ecological aspect, as well as future measures for surveillance and prevention of the disease in Korea.

A GIS-Based Spatial Analysis for Enhancing Classification of the Vulnerable Geographical Region of Highly Pathogenic Avian Influenza Outbreak in Korea (GIS 공간분석 기술을 이용한 국내 고병원성 조류인플루엔자 발생 고위험지역 분류)

  • Pak, Son-Il;Jheong, Weon-Hwa;Lee, Kwang-Nyeong
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • Highly pathogenic avian influenza (HPAI) is among the top infectious disease priorities in Korea and the leading cause of economic loss in relevant poultry industry. An understanding of the spatial epidemiology of HPAI outbreak is essential in assessing and managing the risk of the infection. Though previous studies have reported the majority of outbreaks occurred clustered in what are preferred to as densely populated poultry regions, especially in southwest coast of Korea, little is known about the spatial distribution of risk areas vulnerable to HPAI occurrence based on geographic information system (GIS). The main aim of the present study was to develop a GIS-based risk index model for defining potential high-risk areas of HPAI outbreaks and to explore spatial distribution in relative risk index for each 252 Si-Gun-Gu (administrative unit) in Korea. The risk index was derived incorporating seven GIS database associated with risk factors of HPAI in a standardized five-score scale. Scale 1 and 5 for each database represent the lowest and the highest risk of HPAI respectively. Our model showed that Jeollabuk-do, Chungcheongnam-do, Jeollanam-do and Chungcheongbuk-do regions will have the highest relative risk from HPAI. Areas with risk index value over 4.0 were Naju, Jeongeup, Anseong, Cheonan, Kochang, Iksan, Kyeongju and Kimje, indicating that Korea is at risk of HPAI introduction. Management and control of HPAI becomes difficult once the virus are established in domestic poultry populations; therefore, early detection and development of nationwide monitoring system through targeted surveillance of high-risk spots are priorities for preventing the future outbreaks.