• Title/Summary/Keyword: Highly Maneuverable Aircraft

Search Result 6, Processing Time 0.018 seconds

Development of Modeling and Simulation Tool for the Performance Analysis of Pods Mounted on Highly Maneuverable Aircraft (고기동 항공기 탑재 파드 성능 분석을 위한 모델링 및 시뮬레이션 도구 개발)

  • Lee, Sanghyun;Shin, Jinyoung;Lee, Jaein;Kim, Jongbum;Kim, Songhyon;Kim, Sitae;Cho, Donghyurn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.507-514
    • /
    • 2022
  • The EO/IR targeting pod mounted on a fighter to acquire information about tactical targets is typically mounted and operated at the bottom of the aircraft fuselage. Since the aircraft equipped with such an external attachment has complexed aerodynamic and inertial characteristics compared to the aircraft flying without an external attachment, a method of system performance analyses is required to identify development risk factors in the early stages of development and reflect them in the design. In this study, a development plan was presented to provide the necessary modeling and simulation tools to develop a pod that can acquire measurement data stably in a highly maneuverable environment. The limiting operating conditions of the pods mounted on the highly maneuverable aircraft were derived, the aerodynamics and inertial loads of the mounted pods were analyzed according to the limiting operating conditions, and a flight data generation and transmission system were developed by simulating the mission of the aircraft equipped with the mounted pods.

(Frequency Weighted Reduction Using Iterative Approach of BMI) (BMI의 반복적 해법을 이용한 주파수하중 차수축소)

  • Kim, Yong-Tae;O, Do-Chang;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • In this paper, we present a frequency weighted model reduction using LMIs for minimizing the H$\infty$ weighted model error compared with the methods of frequency weighted balanced truncation and frequency weighted Hankel norm approximation. The proposed algorithm, its form is equal to the sufficient condition of performance preserving controller approximation, is based on an iterative two-step LMI scheme induced from bound real lemma. So, it can be applied to the problem of the performance preserving controller approximation. The controller reduction is useful in a practical control design and ensures its easy implementation and high reliability The validity of the proposed algorithm is shown through numerical examples. Additionaly, we extend the proposed algorithm to performance preserving controller approximation by applying to the HIMAT(highly maneuverable aircraft technology) system.

FUZZY CONTROL LAW OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

  • Sul Cho;Park, Rai-Woong;Nam, Sae-Kyu;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.205-209
    • /
    • 1998
  • A synthesis of fuzzy variable structure control is proposed to design a high-angle-of-attack flight system for a modification version of the F-18 aircraft. The knowledge of the proportional, integral, and derivative control is combined into the fuzzy control that addresses both the highly nonlinear aerodynamic characteristics of elevators and the control limit of thrust vectoring nozzles. A simple gain scheduling method with multi-layered fuzzy rules is adopted to obtain an appropriate blend of elevator and thrust vectoring commands in the wide operating range. Improving the computational efficiency, an accelerated kernel for on-line fuzzy reasoning is also proposed. The resulting control system achieves the good flying quantities during a high-angle-of- attack excursion. Thus the fuzzy logic can afford the control engineer a flexible means of deriving effective control laws in the nonlinear flight regime.

  • PDF

Aircraft CAS Design with Input Saturation Using Dynamic Model Inversion

  • Sangsoo Lim;Kim, Byoung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.315-320
    • /
    • 2003
  • This paper presents a control augmentation system (CAS) based on the dynamic model inversion (DMI) architecture for a highly maneuverable aircraft. In the application of DMI not treating actuator dynamics, significant instabilities arise due to limitations on the aircraft inputs, such as actuator time delay based on dynamics and actuator displacement limit. Actuator input saturation usually occurs during high angles of attack maneuvering in low dynamic pressure conditions. The pseudo-control hedging (PCH) algorithm is applied to prevent or delay the instability of the CAS due to a slow actuator or occurrence of actuator saturation. The performance of the proposed CAS with PCH architecture is demonstrated through a nonlinear flight simulation.

Target State Estimator Design Using FIR filter and Smoother

  • Kim, Jae-Hun;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.305-310
    • /
    • 2002
  • The measured rate of the tracking sensor becomes biased under some operational situation. For a highly maneuverable aircraft in 3D space, the target dynamics changes from time to time, and the Kalman filter using position measurement only can not be used effectively to reject the rate measurement bias error. To cope with this problem, we present a new algorithm which incorporate FIR-type filter and FIR-type fixed-lag smoother, and demonstrate that it has the optimal performance in terms of both estimation accuracy and response time through an application example to the anti-aircraft gun fire control system(AAGFCS).

Development of a Control Law to Pneumatic Control for an Anti-G Suit (Anti-G 슈트 공압 제어를 위한 제어법칙 개발)

  • Kim, Chong-sup;Hwang, Byung-moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.548-556
    • /
    • 2015
  • The highly maneuverable fighter aircraft such as F-22, F-16 and F-15have the high maneuverability to maximize the combat performance, whereas the high maneuver characteristics might degrade the pilot's mission efficiency due to fatigue's increase by exposing him to the high gravity and, in the worst case, the pilot could face GLOC (Gravity-induced Loss Of Consciousness). The advanced aerospace company has applied the various technologies to improve the pilot's tolerance to the gravity acceleration, in order to prevent the pilot from entering the situation of the loss of consciousness. Especially, the Anti-G Suit(AGS) equipment to protect the pilot against the high gravity in flight could improve the mission success rate by decreasing the pilot's fatigue in the combat maneuver as well as prevent the pilot from facing GLOC. In this paper, a control algorithm is developed and verified to provide an optimal air pressure to AGS according to the gravity increase during the high performance maneuver. This result is expected, as the key technology, to contribute to the KF-X(Korean Fighter eXperimental), project in the near future.