• Title/Summary/Keyword: Higher-order ambisonics

Search Result 4, Processing Time 0.035 seconds

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

HRTF-field reproduction for robust virtual source imaging (머리 전달 함수장 재현을 통한 광대역 입체 음향 구현)

  • Choi, Joung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.997-1004
    • /
    • 2007
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional $2{\times}2$ definition is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of Higher-order Ambisonics.

  • PDF

HRTF-field Reproduction for Robust Virtual Source Imaging (머리 전달 함수장 재현을 통한 광대역 입체 음향 구현)

  • Choi, Joung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.199-207
    • /
    • 2008
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional binaural($2{\times}2$) reproduction system is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of higher-order Ambisonics.

Spatial Audio Technologies for Immersive Media Services (체감형 미디어 서비스를 위한 공간음향 기술 동향)

  • Lee, Y.J.;Yoo, J.;Jang, D.;Lee, M.;Lee, T.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.13-22
    • /
    • 2019
  • Although virtual reality technology may not be deemed as having a satisfactory quality for all users, it tends to incite interest because of the expectation that the technology can allow one to experience something that they may never experience in real life. The most important aspect of this indirect experience is the provision of immersive 3D audio and video, which interacts naturally with every action of the user. The immersive audio faithfully reproduces an acoustic scene in a space corresponding to the position and movement of the listener, and this technology is also called spatial audio. In this paper, we briefly introduce the trend of spatial audio technology in view of acquisition, analysis, reproduction, and the concept of MPEG-I audio standard technology, which is being promoted for spatial audio services.