DOI QR코드

DOI QR Code

Spatial Audio Technologies for Immersive Media Services

체감형 미디어 서비스를 위한 공간음향 기술 동향

  • Published : 2019.06.01

Abstract

Although virtual reality technology may not be deemed as having a satisfactory quality for all users, it tends to incite interest because of the expectation that the technology can allow one to experience something that they may never experience in real life. The most important aspect of this indirect experience is the provision of immersive 3D audio and video, which interacts naturally with every action of the user. The immersive audio faithfully reproduces an acoustic scene in a space corresponding to the position and movement of the listener, and this technology is also called spatial audio. In this paper, we briefly introduce the trend of spatial audio technology in view of acquisition, analysis, reproduction, and the concept of MPEG-I audio standard technology, which is being promoted for spatial audio services.

Keywords

HJTOCM_2019_v34n3_13_f0001.png 이미지

그림 1 1차 앰비소닉 마이크로폰 배치

HJTOCM_2019_v34n3_13_f0002.png 이미지

그림 2 멀티채널 스피커 보정 : (a) 스피커 거리에 따른 보정, (b) 스피커 위치에 따른 보정

HJTOCM_2019_v34n3_13_f0003.png 이미지

그림 4 MPEG-I 6DoF 오디오 구성

HJTOCM_2019_v34n3_13_f0004.png 이미지

그림 3 다수의 HOA 마이크로폰 인터폴레이션 개념

References

  1. M. A. Gerzon, "Panpot Laws for Multispeaker Stereo," Convention of the Audio Eng. Soc., May. 1992, Paper no. 3309.
  2. M. Poletti, "The Design of Encoding Functions for Stereophonic and Polyphonic Sound Systems," J. Audio Eng. Soc. , vol. 44, no. 11, 1996, pp. 948-963.
  3. A. Politis, T. Pihlajamaki, V. pulkki, "Parametric Spatial Audio Effects," in Proc. Int. Conf. Digital Audio Effect(DAFx-12) , York, UK, Sept. 2012, pp. 1-8.
  4. 장대영, 이용주, 유재현, 이태진, "고현장감 오디오 서비스를 위한 하이브리드 오디오 기술동향," 전자통신동향분석, 제31권 제3호, 2016.6, pp. 81-90. https://doi.org/10.22648/ETRI.2016.J.310309
  5. X. Zheng, "Soundfield Nabigation: Separation, Compression and Transmission," PhD thesis, University of Wollongong, 2013.
  6. S. Siltanen, T. Lokki, L. Savioja, "Geometry Reduction in Room Acoustics Modeling," in Proc. Institute Acoustics: Auditorium Acoustics. Int. Conf., Copenhagen, Denmark, May 2006, vol. 28. Pt.2.
  7. D. Poirier-Quinot, B.F.G. Katz, M. Noisternig, "EVERTims: Open Source Framework for Real-Time Auralization in Architectural Acoustics and Virtual Reality," in Proc. Int. Conf. Digital Audio Effect(DAFx-17), Edinburgh, UK, Sept. 2017, pp. 323-328.
  8. V. Pulkki, C. Faller, "Directional Audio Coding: Filterbank and STFT-based Design," in AES Convention, Paris, France, May 2006.
  9. B. Cheng, C. Ritz, I. Burnett, "A Spatial Squeezing Approach to Ambisonic Audio Compression," in IEEE Int. Conf. Acoustics, Speech Signal Process., Las Vegas, NV, USA, 2008, pp. 369-372.
  10. J.-H. Yoo, S. Suh, D. Jang, T. Lee, "A Study on Multichannel Sound for Off Sweet Spot Listening Position," in Int. Meeting Inform. Display, Busan, Rep. of Korea, Aug. 2017.
  11. V. Pulkki, "Virtual Sound Source Positioning Using Vector Based Amplitude Panning," J. Audio Eng. Soc., vol. 45, 1997, pp. 456-466.
  12. M. Lins, R. Bomhardt, "Individualization of Head Related Transfer Function," Lekar a technika Clinician Technol., vol. 44, no. 1, 2014, pp. 26-32.
  13. J.G. Tylka, E.Y. Choueiri, "Soundfield Navigation using an Array of Higher-Order Ambisonics Microphones," in AES Conf. Audio Virtual Augmented Reality, Los Angeles, CA, USA, Sept. 2016.
  14. ISO/IEC JTC1/SC29/WG11/N17177, "MPEG-I Audio Architecture and Evaluation for 6DoF," 2017. 10.