• Title/Summary/Keyword: Higher wave

Search Result 1,562, Processing Time 0.031 seconds

Generation of Long Water Waves by Moving Submerged Bodies (수중물체의 운동에 의한 장수파의 생성)

  • Seung-Joon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 1987
  • The wave system due to a moving submerged body is investigated both theoretically and numerically. Boussinesq equation, which is derived under the assumption that the effects of nonlinearity and wave dispersion are of the same order, is generalized to take the forcing agency into account. Furthermore, under the more restrive assumption that the disturbance is of higher order, inhomogeneous Korteweg-de Vries equation is derived. These equations are solved numerically to obtain the generated wave system and the wave-making resistance. These results are compared with those given by the linear theory.

  • PDF

Effect of Hematocrit Level on the Radial Pulse Wave (적혈구 용적이 요골 동맥의 맥파에 미치는 영향)

  • Ryu, Hyun-Hee;Jeon, Young-Ju;Kim, Jae-Uk;Lee, Hae-Jung;Woo, Young-Jae;Lee, Yu-Jung;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1035-1040
    • /
    • 2009
  • In this work, we investigate the effect of blood hematocrit level on the radial pulse wave to study the clinical application of the pulse analyzer. For this purpose, we measured the radial pulse wave at the left Gwan for 15 males with abnormal high hematocrit level and 47 males with normal hematocrit level at the age of thirties and forties. Various variables of the radial pulse wave between two groups were analyzed by Student's T test. We found significant differences in several characteristic variables in the amplitude, time-span and the integrated area of the amplitude and time of the pulse wave. The systolic peak in the amplitude of the radial pulse wave was higher in abnormal high hematocrit group. In contrast, the third peak from the second incisure was higher and longer in normal hematocrit group. Our study suggests that the radial pulse wave can be useful in distinguishing the patient group with high hematocrit level and thus with high blood viscosity. Our finding may motivate research activities towards diverse clinical applications of the pulse wave.

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 -)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

Calculation of Wave Resistance for a Submerged Body by a Higher Order Panel Method (고차 판요소법을 이용한 몰수체의 조파저항 계산)

  • Chang-Gu Kang;Se-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper, wave resistance for a submerged body is calculated by a higher order panel method. The Neumann-Kelvin problem is solved by the source or normal dipole distribution method. The body surface is represented by a bicubic B-spline and the singularity strengths are approximated by a bilinear form. The results calculated by the higher order panel method are compared with those by the lowest order panel method developed by Hess & Smith. The convergence rate of the higher order panel method is much better than the lowest order panel method. But the wave resistance calculated by the higher order panel method still shows discrepancy with an analytic solution at low Froude number like that by the lowest order panel method.

  • PDF

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

A Study on Experimental Method of Impulse turbine for OWC-type Wave Energy Conversion (파력발전용 임펄스터빈의 모형시험 기법연구)

  • LEE YOUNG-YEON;HONG SEOK-WON;HYUN BEOM-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.268-273
    • /
    • 2004
  • A study on experimental method of the model test for the impulse turbine is carried out. the wave simulator is used to reproduce the real wave condition. It controls two parameter correspond to wave height and wave frequency. The optimum design which is reported by T. Setoguchi is manufactured and tested for the validation of our test facilities. The comparison of model test show that our facilities produce little bit higher efficiency at maximum efficiency point. To increase the efficiency of turbine, the new rotor with negative tip clearance is designed and being tested.

  • PDF

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.

Hair Damage and Wave Efficiency according to the Degree of Alkalinity in Permanent Wave

  • Jeong, Nam-Young;Lim, Sun-Nye;Choi, Chang-Nam
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • Diversification and individualization are pursued to fulfill the increasing human desire for beauty. There are many methods to change human appearances; of these, a permanent wave is often applied to improve beauty. A permanent wave uses physical and chemical methods to break and reform the bonds of natural hair. Thus, research into the optimized conditions for permanent waves is necessary to minimize hair damage and improve the efficiency of the treatment. The object of this study is to examine the effect of varying the alkalinity (8%, 12%, and 16%) of the permanent wave treatment on the wave efficiency, degree of hair damage via tensile strength, and degree of hair protein release. The results indicate that the treatment with the highest alkalinity (16%) is more effective than that with 8% alkalinity; however, the degree of hair damage when treated with the 16% alkalinity wave is higher than with the 8% alkalinity wave. Additionally, hair proteins increasingly dissolve with increasing alkalinity of the permanent wave.

Frequency analysis of wave run-up on vertical cylinder in transitional water depth

  • Deng, Yanfei;Yang, Jianmin;Xiao, Longfei;Shen, Yugao
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.201-213
    • /
    • 2014
  • Wave run-up is an important issue in offshore engineering, which is tightly related to the loads on the marine structures. In this study, a series of physical experiments have been performed to investigate the wave run-up around a vertical cylinder in transitional water depth. The wave run-ups of regular waves, irregular waves and focused waves have been presented and the characteristics in frequency domain have been investigated with the FFT and wavelet transform methods. This study focuses on the nonlinear features of the wave run-up and the interaction between the wave run-up and the cylinder. The results show that the nonlinear interaction between the waves and the structures might result wave run-up components of higher frequencies. The wave run-ups of the moderate irregular waves exhibit 2nd order nonlinear characteristics. For the focused waves, the incident waves are of strong nonlinearity and the wavelet coherence analysis reveals that the wave run-up at focal moment contains combined contributions from almost all the frequency components of the focused wave sequence and the contributions of frequency components up to 4th order harmonic levels are recommended to be included.