• Title/Summary/Keyword: Higher wave

Search Result 1,562, Processing Time 0.036 seconds

Estimation of Wave Energy Extraction Efficiency for a Compact Array System of Small Buoys (밀집 배열 부이시스템의 파랑에너지 추출 효율 추정)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A compact array system of small buoys is used for wave energy extraction. To evaluate the performance of this system, hydrodynamic analysis is carried out in regular waves using the higher order boundary element method. The motion response of each buoy is calculated considering hydrodynamic interactions caused by other buoys. The effect of energy extraction device is modeled as a linear damping load. The efficiencies of energy conversion are compared using the various sizes and arrangements of the array system and the damping coefficients for energy extraction. The increase in size or the packing ratio of the system gives better efficiency. However, the wave condition and the cost for the system should be considered to optimize performance from the perspective of engineering and economics. The proposed nondimensionalized damping coefficient for energy extraction is 0.1~0.5.

Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator (초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Lee, Soo-Gab
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

A Study on Design and Fabrication of Complex Type EM Wave Absorber with Super Wide-band Characteristics

  • Kim Dae-Hun;Kim Dong-Il;Choi Chang-Mook;Son Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • In order to construct an Anechoic Chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics was proposed and designed in order to satisfy the above requirements by using the Equivalent Material Constant Method(EMCM) and Finite Difference Time Domain(FDTD). The proposed absorber is to attach a pyramidal absorber onto a hemisphere-type absorber on a cutting cone-shaped ferrite. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.

Backward and forward rotating of FG ring support cylindrical shells

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.137-150
    • /
    • 2020
  • In this research work, the analytical rotating vibration for functionally graded shell with ring supports are restricted to some volume fraction laws based on Rayleigh-Ritz technique. The frequencies of functionally grade cylindrical shells have been investigated for the distribution of material composition of material with two kinds of material. Stability of a cylindrical shell depends highly on these aspects of material with ring supports. The frequency behavior is investigated with fraction laws versus circumferential wave number, length-to-radius and height-to-radius ratios. The frequencies are higher for higher values of circumferential wave number. The frequency first increases and gain maximum value with the increase of circumferential wave mode. Moreover, the effect of angular speed is also investigated. It is examined that the backward and forward frequencies increases and decreases on increasing the ratio of height- and length-to-radius ratios.

EFFECTS OF PARTICLE RESONANCE ON DISPERSION OF ELASTIC WAVES IN PARTICULATE COMPOSITES

  • Kim, J.Y.;Ih, J.G.;Lee, B.H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.734-739
    • /
    • 1994
  • Elastic wave propagation in discrete random medium is studied to evaluate the effects of particle resonance on dispersion and attenuation of composite materials containing spherical inclusions. The frequency-dependent wave speed and attenuation coefficient can be obtained from proposed self-consistent method. It can be observed that the abrupt increase of effective wave speed and the concurrent peak of attenuation at low frequency is due to the lowest resonance of particles, whereas those in high frequency region are due to higher ones. The lowest resonance is mainly caused by the density mismatch and higher resonances by the stiffness mismatch between matrix and particles. The dispersion and attenuation of elastic waves in particulate composites are affected by the lowest resonance much than by higher ones.

  • PDF

Usefulness of Quantified-EEG in Dementia (치매에서 정량적 뇌파검사의 유용성)

  • Han, Dong-Wook;Seo, Byoung-Do;Son, Young-Min
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • Background : The conventional electroencephalography(EEG) is commonly used as aid in the diagnosis of dementia. Recently developed quantitative electroencephalography(qEEG) provides data that are not achievable by conventional EEG. The aim of this study was to find out the usefulness of quantified-EEG in dementia. Method : Twenty elderly women(10 normal elderly, 10 demented elderly) were participated in this study. EEG power and coherence was computed over 21 channels; right and left frontal, central, parietal, temporal and occipital areas. Result : The activity of ${\alpha}$ wave was more higher than others significantly at frontal and parietal areas in normal elderly, but the activity of ${\theta}$ wave was higher in demented elderly. And the activity of ${\theta}$ wave in demented elderly women was more higher than normal elderly women significantly. Conclusion : In conclusion, we discovered that quantitative EEG was used to diagnose dementia.

  • PDF

A Study on the Characteristics of Large Amplitude Ocean Waves (대진폭 해양파의 특성에 대한 연구)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • In this paper time series wave data which contain a freak wave is investigated. Various wave characteristics are compared between wave data with a freak wave and without. Among 24 hour wave data measured in the Yura Sea, two adjacent 30 min wave data with and without a freak wave are examined intensively. It is seen that the highest waves do not have the longest wave period. The wave period of the longest period waves is a little longer than the average wave period and much shorter than the significant wave period. Although the sea state is quite high, the Rayleigh distribution fits well to the probability of wave height. The characteristics of the wave spectra do not change much, but the nonlinearity increases for the wave data with a freak wave. The significant wave height without a freak wave is larger than that with a freak wave. Hence, the higher significant wave height does not always increase the probability of the occurrence of the freak waves.

  • PDF

All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

  • Wu Qian;Killeen Timothy L.;Solomon Stanley C.;McEwen Donald J.;Guo, Weiji
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.237-247
    • /
    • 2002
  • We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute $(75^{\circ}N)$ and a joint observation of 10-hour wave with Eureka $(80^{\circ}N)$. All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSW predictions. The FPls at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new fractures about the mesospheric gravity wave, tidal wave, and other oscillations.

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

MASS TRANSPORT IN FINITE AMPLITUDE WAVES

  • ;Robert T. Hudspeth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.29-36
    • /
    • 1988
  • A general scheme is developed which determines the Lagrangian motions of water particles by the Eulerian velocity at their mean positions by use of Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass transport velocity which includes the effects of higher-order wave components is determined. The fifth-order theory predicts the mass transport velocity less than that given by the existing second-order theory over the whole depth. Limited experimental data for changes in wave celerity in closed wave flumes are compared with the theoretical predictions.

  • PDF