Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.2.137

Backward and forward rotating of FG ring support cylindrical shells  

Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University)
Naeem, Muhammad Nawaz (Department of Mathematics, Govt. College University Faisalabad)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Steel and Composite Structures / v.37, no.2, 2020 , pp. 137-150 More about this Journal
Abstract
In this research work, the analytical rotating vibration for functionally graded shell with ring supports are restricted to some volume fraction laws based on Rayleigh-Ritz technique. The frequencies of functionally grade cylindrical shells have been investigated for the distribution of material composition of material with two kinds of material. Stability of a cylindrical shell depends highly on these aspects of material with ring supports. The frequency behavior is investigated with fraction laws versus circumferential wave number, length-to-radius and height-to-radius ratios. The frequencies are higher for higher values of circumferential wave number. The frequency first increases and gain maximum value with the increase of circumferential wave mode. Moreover, the effect of angular speed is also investigated. It is examined that the backward and forward frequencies increases and decreases on increasing the ratio of height- and length-to-radius ratios.
Keywords
material composition; wave number; fabrication; cylindrical shell;
Citations & Related Records
Times Cited By KSCI : 25  (Citation Analysis)
연도 인용수 순위
1 Ramteke, P., Mehar, K., Sharma, N. and Panda, S. (2020a), Numerical Prediction of Deflection and Stress Responses of Functionally Graded Structure for Grading Patterns (Power-Law, Sigmoid and Exponential) and Variable Porosity (Even/Uneven).
2 Scientia Iranica. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrica shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.   DOI
3 Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va..
4 Avcar M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
5 Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
6 Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.   DOI
7 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129.
8 Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.   DOI
9 Sharma, C.B. (1974), "Calculation of natural frequencies of fixed-free circular cylindrical shells", J. Sound Vib., 35(1), 55-76. https://doi.org/10.1016/0022-460X(74)90038-8.   DOI
10 Sharma, C.B., Darvizeh, M. and Darvizeh, A. (1998), "Natural frequency response of vertical cantilever composite shells containing fluid", Eng. Struct., 20(8), 732-737. https://doi.org/10.1016/S0141-0296(97)00102-8.   DOI
11 Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. DOI: 10.1115/1.2930412.   DOI
12 Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", J. Eng. Ind. - T. ASME, 93, 1229-1232 (1971). https://doi.org/10.1115/1.3428067.   DOI
13 Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2: Thermo Mechanical Behavior", Int. Mater, 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.   DOI
14 Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.   DOI
15 Toulokian, Y.S. (1967), "Thermo physical properties of high temperature solid materials", New York: Macmillan.
16 Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340- 1342. https://doi.org/10.1121/1.1914708.   DOI
17 Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. DOI: 10.1006/jsvi.1993.1010.   DOI
18 Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nuclear Eng. Design, 63(1), (1981) 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.   DOI
19 Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", J. Appl. Mech.- T ASME, 31, 700-701. DOI: 10.1115/1.3629733   DOI
20 Galletly, G.D. (1955), On the in-vacuo vibrations of simply supported, ring-stiffened cylindrical shells. US National Congress of Applied Mechanics.
21 Jiang, J. and Olson, M.D. (1994), "Vibrational analysis of orthogonally stiffened cylindrical shells using super elements", J. Sound Vib., 173, 73-83. https://doi.org/10.1006/jsvi.1994.1218.   DOI
22 Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.   DOI
23 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.   DOI
24 Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.   DOI
25 Wang, C.M., Swaddiwudhipong, S. and Tian, J. (1997), "Ritz method for vibration analysis of cylindrical shells with ring-stiffeners", J. Eng. Mech., 123, 134-143. http/org/doi/10.1061.   DOI
26 Xiang, Y., Ma. Y.F., Kitipornchai. S. and Lau. C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech.Sci., 44(9),1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.   DOI
27 Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043   DOI
28 Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.   DOI
29 Koizumi, M. (1997), "FGM activities in Japan, Composites", https://doi.org/10.1016/S1359-8368(96)00016-9.
30 Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proceedings of the Cambridge philosophical Society, 7, 101-111.
31 Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
32 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.   DOI
33 Kolahchi, R. and Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Matt. Mech., 37(2), 265-274.   DOI
34 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.   DOI
35 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
36 Madani H, Hosseini H, and Shokravi M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.   DOI
37 Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.   DOI
38 Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
39 Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech, Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.   DOI
40 Loy, C.T. and Lam, K.Y. (1997), "Vibration of cylindrical shells with ring supports", J. Mech. Eng., 39, 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
41 Mehar, K. and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polymer Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.   DOI
42 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
43 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.   DOI
44 Motezaker, M. and Eyvazian A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.   DOI
45 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A-Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
46 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.   DOI
47 Mehar, K., Panda, S.K. and Patle, B.K. (2018b), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polymer Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.   DOI
48 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.   DOI
49 Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486 https://doi.org/10.12989/sem.2020.73.5.481.   DOI
50 Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proc. Instn. Mech. Engrs, 214(10), 1313-1328. https://doi.org/10.1243/0954406001523290.
51 Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.   DOI
52 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.   DOI
53 Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.   DOI
54 Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.   DOI
55 Ramteke, P.M., Mahapatra, B.P., Panda, S.K. and Sharma, N. (2020b), "Static deflection simulation study of 2D Functionally graded porous structure", Materials Today: Proceedings.