• 제목/요약/키워드: Higher excited state

검색결과 28건 처리시간 0.021초

Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed $TiO_2$/Y Zeolites using Visible Light

  • Lee, Jeong-Jin;Kim, Yanghee;Minjoong Yoon
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.27-32
    • /
    • 2001
  • Photoreduction of Methyl Orange Catalyzed by Nile Red-Adsorbed TiO$_2$/Y zeolites. Nile Red was successfully adsorbed on TiO$_2$/Y zeolites and the absorption profile is very broad with maxima, ca. 630 nm. The peak is largely red-shifted compared to that observed in hydrocarbon solvents. Furthermore, a broad and largely Stokes shifted emission band as observed around 660 nm. The largely Stokes shifted emission band should be originated from the excited state structural changes. In order to understand the photocatalytic activities of Nile Red-adsorbed TiO$_2$/Y zeolite, the photoreduction of Methyl Orange(5.0$\times$10$^{-5}$ M) was studied using visible light beyond 320 nm. Methyl Orange was effectively reduced by Nile Red-adsorbed TiO$_2$/Y zeolite, indicating the photocatalytic activity of Nile Red-adsorbed TiO$_2$ zeolites was enhanced by about eight times higher than that of TiO$_2$/Y zeolite.

  • PDF

협동학습이 간호학생의 학습성과와 수업경험의 질에 미치는 효과 (Effectiveness of Cooperative Learning on Nursing Students' Performance and Experience)

  • 박정혜
    • 한국간호교육학회지
    • /
    • 제16권2호
    • /
    • pp.202-212
    • /
    • 2010
  • Purpose: The purpose of this study was to identify the effectiveness of the JigsawⅣ cooperative learning in a facilitative communication class of nursing students. Achievement, communication skill, self-directed learning and experience during the class were measured. Method: This study was a pretest and posttest design with two subject groups. 43 students were in experimental (JigsawⅣ) group and 47 ones were in control (general small discussion) group. Classes were conducted over a 6-week period. The collected data was analyzed by the SPSS 12.0 program. Result: After taking part in the educational program, the experimental group had significantly more improvement in communication skill (F=6.81, p=.002) and self-directed learning (F=11.81, p=.000). In addition, the experimental group showed significantly higher scores for concentration in the class (t=2.26, p=.27), positive emotional state (t=3.01, p=.003) and active participation (t=2.78, p=.007) compared to the control group. However, the achievement between the two groups was not significantly different (F=3.29, p=.073). Conclusion: The findings of this study show that JigsawⅣ cooperative learning has positive effects in improvement of communication skill and self-directed learning. Also, students were excited and interested in the class during cooperative learning. Based on these findings, the author suggests developing additional educational programs focusing on nursing students.

저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션 (Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas)

  • 손채화
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권12호
    • /
    • pp.601-605
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

Photohysical Properties of New Psoralen Derivatives:Psoralens Linked to Adenine through Polymethylene Chains

  • Yoo, Dong-Jin;Park, Hyung-Du;Kim, Ae-Rhan;Rho, Young S.;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1315-1327
    • /
    • 2002
  • The model compounds, 8-methoxypsoralen-CH2O(CH2)n-adenine (MOPCH2OCnAd, n=2, 3, 5, 6, 8, and 10) in which 5 position of 8-methoxypsoralen (8-MOP) is linked by various lengths of polymethylene bridge to N9 of adenine. UV absorption spectra are identical with the sum of MOPCH2OC3 and adenine absorption spectra. Solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the $(\pi${\rightarrow}$\pi*)$ state. The spectral characteristics of the fluorescence of MOPCH2OCnAd are strongly dependent upon the nature of the solvents. The fluorescence emission spectra in aprotic solvents are broad and structureless due to the excimer formation through the folded conformation accelerated by hydrophobic ${\pi}-{\pi}$ stacking interaction. Increasing polarity of the protic solvents leads to higher population of unfolded conformation stabilized through favorable solvation and H-bonding, and consequently to an increase in the fluorescence intensity, fluorescence lifetime, and a shift of fluorescence maximum to longer wavelengths. The decay characteristics of the fluorescence in polar protic solvents shows two exponential decays with the lifetimes of 0.6-0.8 and 1.6-1.9 ns in 5% ethanol/water, while MOPCH2OC3 shows 0.5 and 1.7 ns fluorescence lifetimes. The long-lived component of fluorescence can be attributed to the relaxed species (i.e., the species for which the solvent reorientation (or relaxation) has occurred), while the short-lived components can be associated with the unrelaxed, or only partially relaxed, species.

희박 예혼합 덤프 연소기에서 OH 자발광을 이용한 열 방출에 관한 실험적 연구 (Experimental Study on Heat Release in a Lean Premixed Dump Combustor Using OH Chemiluminescence Images)

  • 문건필;이종호;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1368-1375
    • /
    • 2004
  • Measurements of OH chemiluminescence in an atmospheric pressure, laboratory-scale dump combustor at equivalence ratios ranging from 0.63 to 0.89 were reported. The signal from the first electronically excited state of OH to ground state was detected through a band-pass filter with an ICCD. The objectives of this study are two: One is to see the effects of equivalence ratio on global heat release rate and local Rayleigh index distribution. To get the local Rayleigh index distribution, the line-of-sight images were inverted by tomographic method, such as Abel do-convolution. Another aim is to investigate the validity of using OH chemiluminescence acquired with an ICCD as a qualitative measure of local heat release. For constant inlet velocity and temperature, the overall intensities of OH emission acquired at different equivalence ratio showed periodic and higher value at high equivalence ratio. OH intensity averaged over one period of pressure increased exponentially with equivalence ratio. Local Rayleigh index distribution clearly showed the region of amplifying or damping the combustion instability as equivalence ratio increased. It could provide an information/insights on active control such as secondary fuel injection. Finally, local heat release rate derived from reconstructed OH images were presented fur typical locations.

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Eom, Yu Kyung;Ryu, Jung Ho;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Luminescent lanthanide complexes have been overviewed for advanced photonics applications. Lanthanide(III) ions ($Ln^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins, naphthalenes, anthracene, push-pull diketone derivatives and boron dipyrromethene(bodipy). The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to $Ln^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of $Ln^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent $Ln^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent $Ln^{3+}$ complexes, yielding novel $Ln^{3+}$-cored dendrimer complex such as metalloporphyrins, naphthalenes, and anthracenes bearing the Fr$\acute{e}$chet aryl-ether dendrons, namely, ($Er^{3+}-[Gn-Pt-Por]_3$ (terpy), $Er^{3+}-[Gn-Naph]_3$(terpy) and $Er^{3+}-[Gn-An]_3$(terpy)). These complexs showed much stronger near-IR emission bands at 1530 nm, originated from the 4f-4f electronic transition of the first excited state ($^4I_{13/2}$) to the ground state ($^4I_{15/2}$) of the partially filled 4f shell. A significant decrease in the fluorescence of metalloporphyrins, naphthalenes and anthracene ligand were accompanied by a strong increase in the near IR emission of the $Ln^{3+}$ ions. The near IR emission intensities of $Ln^{3+}$ ions in the lanthanide(III)-encapsulated dendrimer complexes were dramatically enhanced with increasing the generation number (n) of dendrons, due to the site-isolation and the light-harvesting(LH) effects. Furthermore, it was first attempted to distinguish between the site-isolation and the light-harvesting effects in the present complexes. In this review, synthesis and photophysical studies of inert and stable luminescent $Ln^{3+}$ complexes will be dealt for the advanced photonics applications. Also, the review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to $Ln^{3+}$ ions with $Ln^{3+}$-chelated prototype complexes.